Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Guiseppe De Cecco

Chern classes of vector bundles with singular connections

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 73 (1982), n.6, p. 207-220.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1982_8_73_6_207_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - Chern classes of vector bundles with singular connections. Nota di Giuseppe De Cecco ${ }^{(*)}$, presentata ${ }^{(* *)}$ dal Socio straniero A. Lichnerowicz.

Abstract

Riassunto. - Si fa vedere che alcune classi di Chern di fibrati vettoriali complessi possono essere costruite non solo partendo da connessioni C^{∞} ma, sotto certe condizioni, anche da connessioni lineari singolari. Nel caso particolare del fibrato tangente possono essere costruite anche a partire da metriche singolari. Viene fatto uso in modo essenziale della L_{2}-coomologia di de Rham (introdotta da Cheeger e Teleman).

The aim of the present note is to show that some Chern classes of complex vector bundles can be constructed not only via C^{∞} connections but also, under certain conditions, via singular linear connections ${ }^{(1)}$.

Let M be a differentiable compact Riemannian manifold and N a closed submanifold of M. We denote by $\delta(p)$ the distance of a point of \mathbf{M} from N with respect to the Riemannian structure.

If p is close to N , then $\delta(p)$ coincides with the " geodesic distance" from p to N , which behaves like the Euclidean distance.

We call $\tilde{r}(p)$ a suitable extension to all M of the geodesic distance (defined on a neighbourhood of N).

Let \mathbf{E} be a C^{∞} vector bundle on M with complex fibre.
Choose an arbitrary C^{∞} connection ∇ for E and consider the new " connection"

$$
\tilde{\nabla}=\nabla+\tilde{r}^{\alpha} \mathrm{H} \quad \alpha \in \mathbf{R}-0
$$

where H is a $\operatorname{Hom}(E, E)$-valued one-form on E such that it is bounded on M and its first derivatives are bounded in modulus by $r^{-1} \mathrm{C}$ with C constant.

The " connection" $\tilde{\nabla}$ is in general not C^{∞}; indeed it is singular. In fact if, for instance, $\alpha<0$, then $\tilde{r}(p)$ diverges for $p \in \mathrm{~N}$.

Now, starting from ∇, one can construct, in the usual way, the Chern classes by the Chern-Weil homomorphism.

If one wishes to repeat the above argument for $\tilde{\nabla}$, one then immediately realizes that the Chern forms, constructed from $\tilde{\nabla}$, no longer induce elements of the de Rham cohomology of M . On the other hand, a suitable one is the L_{2}-de Rham cohomology $\mathrm{H}_{d}^{*}(\mathrm{M} ; \mathbf{C})$, introduced independently by J. Cheegar
(*) This work was carried out in the framework of the activities of the GNSAGA (CNR - Italy).
(**) Nella seduta dell'11 dicembre 1982.
(1) For a different context under different assumption, see D. Lehmann [4].
and N. Teleman, who also proved that the inclusion of the de Rham complex in the L_{2}-de Rham complex induces an isomorphism at the cohomological level.

Therefore, in the present paper, we first investigate which relationship must exist among $\alpha, \operatorname{dim} \mathrm{M}, \operatorname{dim} \mathrm{N}$ and the order of the Chern forms in order that these latter may be cocycles in the L_{2}-de Rham complex.

Following [1] we introduce the L_{2}-Chern classes $\tilde{c}_{h}(\mathrm{E})$, after constructing a Weil homomorphism from the ring of invariant forms to the ring of the L_{2}-cohomology thus proving (Theorem A) that for some values of h we have

$$
\tilde{c}_{h}(\mathrm{E})=\iota^{*}\left(c_{h}(\mathrm{E})\right)
$$

whre $\iota^{*}: \mathrm{H}^{*}(\mathbf{M} ; \mathbf{C}) \rightarrow \mathrm{H}_{d}^{*}(\mathbf{M} ; \mathbf{C})$ is the L_{2}-de Rham-isomorphism.
Then we consider the particular case in which E is the bundle tangent to the almost complex manifold M. If g_{p} is a hermitian metric of C^{∞}-class on the fibre E_{p}, the " metric" defined by

$$
\tilde{g}_{p}=\tilde{r}^{\alpha} g_{p}
$$

is, in general, singular.
Then, if we denote by ∇ (resp. $\tilde{\nabla}$) the Levi-Civita "connection" associated to g (resp. \tilde{g}) the following holds

$$
\tilde{\nabla}=\nabla+r^{-1} \mathrm{H}
$$

hence the issue

$$
\tilde{c}_{h}(\mathrm{TM})=\mathrm{i}^{*}\left(c_{h}(\mathrm{TM})\right) \quad h<(k-2) / 4
$$

where k is the codimension of N to M . An analogous result can be established for the Pontrjagin classes of \mathbf{M}.

I thank N. Teleman for discussions and advice given during the writing of this paper.

1. Preliminaries

(1.1) Let M be a compact differentiable manifold of dimension n. Let us consider a Riemannian metric Γ on M and a PL-structure compatible with the differentiable structure (this is possible because of Whitehead theorem).

The Riemannian metric Γ becomes a " combinatorial Riemannian metric" Γ^{\prime} in the sense of Teleman [7], relative to any fixed triangulation $\overparen{6}$, compatible with the PL-structure.

It follows from this (as we soon see) that the space of the L_{2}-forms of degree r constructed via the Riemannian metric $\Gamma, \mathrm{L}_{2}^{r}((\mathrm{M}, \Gamma)) \equiv \mathrm{L}_{r}^{2}(\mathrm{M}, \mathscr{D} i f f)$, coincides with $\mathrm{L}_{2}^{r}\left(\left(\mathrm{M}, \Gamma^{\prime}\right)\right) \equiv \mathrm{L}_{2}^{r}(\mathrm{M}, \mathscr{P} \mathscr{L})$ constructed via the combinatorial metric $\Gamma^{\prime}(=\Gamma)$.
(1.2) Indeed recall that the space $\mathrm{L}_{2}^{r}(\mathbf{M}, \mathscr{D}$ iff $)$ is, by definition, the completion of the space $\mathrm{C}^{\infty}(\mathrm{M})$ of the complex differential forms on M respect to the norm

$$
\|\omega\|^{2}=\int_{M} \omega \wedge * \bar{\omega}
$$

where ω is a r-form, * is the Hodge operator with respect to the metric Γ and $\bar{\omega}$ is the (complex) conjugate of ω.

Recall now the definition of $\mathrm{L}_{r}^{2}(\mathrm{M}, \mathscr{P} \mathscr{L})$.
$\mathscr{C}=\left\{\sigma_{\alpha}^{(s)}\right\}_{\alpha \in \Lambda}$ being the fixed triangulation of M (where $\sigma_{\alpha}^{(s)}$ is an arbitrary closed simplex of dimension s with $0 \leq s \leq m$), we denote $\mathrm{S}^{*}(\mathrm{M})=\left\{\mathrm{S}^{r}(\mathrm{M}), d^{r}\right\}_{r \in \mathbf{N}}$ the Sullivan complex ${ }^{(2)}$, where $\mathrm{S}^{r}(\mathrm{M})$ consists of all complex exterior PL-forms of degree r on M with differentiable coefficients and $d^{r}: \mathrm{S}^{r}(\mathrm{M}) \rightarrow \mathrm{S}^{r+1}(\mathrm{M})$ is the usual exterior differentiation on the r-forms.

The restriction ω_{α} of $\omega \in \mathrm{S}^{r}(\mathrm{M})$ to any maximal simplex $\sigma_{\alpha}^{(m)} \in \mathscr{C}$ belongs to $\mathrm{S}^{r}\left(\sigma_{\alpha}^{(m)}\right)$ and the L_{2}-norm can be defined in the usual manner:

$$
\left\|\omega_{\alpha}\right\|^{2}=\int_{\sigma_{\alpha}^{(m)}} \omega_{\alpha} \wedge * \bar{\omega}_{\alpha}
$$

* being the star operator with respect to the combinatorial metric $\Gamma^{\prime}=\left\{\Gamma_{\alpha}^{\prime}\right\}_{\alpha \in \Lambda}$ (associated to \widetilde{b}). Then we can define on $\mathrm{S}^{r}(\mathrm{M})$ the following norm

$$
\|\omega\|^{2}=\sum_{\alpha \in \Lambda}\left\|\omega_{\alpha}\right\|^{2} \quad \operatorname{dim} \sigma=m
$$

which derives from a scalar product. The completion of $\mathrm{S}^{r}(\mathrm{M})$ with respect to such a norm is, by definition, $\mathrm{L}_{r}^{2}(\mathrm{M}, \mathscr{P} \mathscr{L})$.

Now $\mathrm{C}^{\infty}(\mathrm{M}) \subset \mathrm{S}^{*}(\mathrm{M})$ and it is easy to verify that $\mathrm{S}^{*}(\mathrm{M}) \subset \mathrm{L}_{2}^{r}(\mathrm{M}, \mathscr{D}$ iff $)$, hence the assertion

$$
\mathbf{L}_{2}^{r}(\mathbf{M}, \mathscr{D} i f f)=\mathbf{L}_{2}^{r}(\mathbf{M}, \mathscr{P} \mathscr{L})
$$

since the norms with respect to which the completion is made coincide on the space of forms $\mathrm{C}^{\infty}(\mathrm{M}) \subset \mathrm{S}^{*}(\mathrm{M})$.

Therefore in the following we simply shall denote by $L_{2}(\mathrm{M})$ the space of the L_{2}-forms.
(1.3) Let us set moreover, as in [7]

$$
\mathscr{D}_{d}^{r}=\left\{\omega \mid \omega \in \mathrm{L}_{2}^{r} \quad, \quad d \omega \in \mathrm{~L}_{2}^{r+1}\right\} .
$$

The complex $\mathscr{D}_{d}^{*}=\left\{\mathscr{D}_{d}^{r}, d^{r}\right\}_{r \in \mathbf{N}}$ will be named L_{2}-de Rham complex and his homology $\mathrm{H}_{d}^{*}(\mathrm{M} ; \mathbf{C})$ will be called L_{2}-cohomology.
(2) For further details see D. Sullivan [5] and N. Teleman [7].

The natural inclusion map

$$
\imath: \mathrm{C}^{\infty}(\mathrm{M}) \subset \longrightarrow \mathscr{D}_{d}^{*}(\mathrm{M})
$$

as we said above, induces an isomorphism (L_{2}-de Rham theorem)

$$
\iota^{*}: \mathrm{H}^{*}(\mathrm{M} ; \mathbf{C}) \rightarrow \mathrm{H}_{d}^{*}(\mathrm{M}: \mathbf{C})
$$

$H^{*}(M ; C)$ being the singular cohomology of M with complex coefficients.

2. The function \vec{r}.

(2.1) Let N be a closed submanifold of M and let $\delta(p)=d(p, \mathrm{~N})$ be the distance from p to N induced by the Riemannian structure Γ. It is known that a unique unit-speed geodesic γ goes through any $p \in \mathrm{M}$ close to N that intersects N orthogonally at a point q^{*}. The length of the geodesic contained in γ and joining p with q^{*} will be called "geodesic distance" from p to $\mathrm{N}, r(p)$. Thus r is not defined on all of M but only on a ε-neighbourhood N_{ε} of $\mathrm{N}^{(3)}$, on which $r(p)$ coincides with $\delta(p)$.

Consider now the following C^{∞} monotone function

$$
\begin{array}{rlr}
\varphi: \mathbf{R} & \rightarrow \mathbf{R} & \\
\varphi(t) & =t & 0 \leq t \leq(1 / 2) \varepsilon \\
& =1 & (2 / 3) \varepsilon \leq t .
\end{array}
$$

Then $\varphi \circ r$ is identically equal to 1 on the boundary of N_{ε}, so that it is possible to extend in to M as the function

$$
\tilde{r}: \mathrm{M} \rightarrow \mathbf{R}
$$

defined by

$$
\begin{align*}
\tilde{r}(p) & =\varphi \circ r(p) & & p \in \mathrm{~N}_{\varepsilon} \tag{2.2}\\
& =1 & & p \in \mathrm{M}-\mathrm{N}_{\varepsilon} .
\end{align*}
$$

(2.3) In order to describe the geometry of M near to N consider a system of coordinates adapted to the submanifold and precisely the Fermi coordinates.

Set $m=\operatorname{dim} \mathrm{M}, n=\operatorname{dim} \mathrm{N}$ and $k=m-n$. Let e_{1}, \cdots, e_{k} be orthonormal sections of the normal bundle of N into M defined in a neighbourhood of $q \in \mathrm{~N}$. Then $\sum_{h=1}^{k} t_{h} e_{h}(q)$ is a vector in the space $\mathrm{T}_{q}(\mathrm{~N})^{1} \subset \mathrm{~T}_{q}(\mathrm{M})$.
(3) The neighbourhood can be characterized (see A. Gray [3]).

If (y_{1}, \cdots, y_{n}) is an arbitrary system of coordinates on N defined in a neighbourhood $\mathrm{W} \subset \mathrm{N}$ of q, then Fermi coordinates are given by

$$
\begin{array}{ll}
x_{i}\left(\exp _{q}\left(\sum_{h=1}^{k} t_{h} e_{h}(q)\right)=y_{i}(q)\right. & \\
x_{j}\left(\exp _{q}\left(\sum_{h=1}^{k} t_{h} e_{h}(q)\right)=t_{j}\right. & j=n+1, \cdots, m
\end{array}
$$

Let U be an open set of M such that $\mathrm{W} \subset \mathrm{U} \cap \mathrm{N}$. Thus if $p \in \mathrm{U}$ has coordinates $\left(x_{1}, \cdots, x_{m}\right)$ then one has ${ }^{(4)}$

$$
r(p)=d(p, \mathrm{~N})=\sqrt{x_{n+1}^{2}+\cdots+x_{m}^{2}}
$$

One can easily see that

$$
\begin{equation*}
\left|\frac{\partial^{|a|} r}{\partial x^{a}}\right| \leq \mathrm{C}_{a} r^{1-|a|} \tag{2.4}
\end{equation*}
$$

where C_{a} is a constant and $a=\left(a_{1}, \cdots, a_{m}\right)$ is a multiindex with $a_{1}+\cdots+$ $+a_{m}=|a|$.

On the other hand, for our considerations, the computation up to the second derivates suffices. Explicitly

$$
\begin{aligned}
\frac{\partial r}{\partial x_{i}} & = \begin{cases}0 & i=1, \cdots, n \\
\frac{x_{i}}{r} & i=n+1, \cdots, m\end{cases} \\
\frac{\partial^{2} r}{\partial x_{i} \partial x_{j}} & = \begin{cases}0 & i \circ j=1, \cdots, n \\
\frac{\delta_{i j}}{r}-\frac{x_{i} x_{j}}{r^{3}} & i, j=n+1, \cdots, m\end{cases}
\end{aligned}
$$

($\delta_{i j}$ Kronecker symbol)
from which

$$
\begin{aligned}
\left|\frac{\partial r}{\partial x_{i}}\right| & \leq 1 \\
\left|\frac{\partial^{2} r}{\partial x_{i} \partial x_{j}}\right| & \leq\left|\frac{\delta_{i j}}{r}\right|+\left|\frac{x_{i} x_{j}}{r^{3}}\right|<\frac{1}{r}\left(1+\left|\frac{x_{i}}{r}\right|\left|\frac{x_{j}}{r}\right|\right) \leq \frac{2}{r} .
\end{aligned}
$$

3. L_{2}-Chern classes

(3.1) Let E be a C^{∞} bundle over the C^{∞} manifold M with fibre \mathbf{C}^{q}. Denote by $L_{2}(\mathrm{M})=\sum_{r} \mathrm{~L}_{2}^{r}(\mathrm{M})$ the graded ring of the L_{2}-de Rham complex, formed by L_{2}-forms on M . The differential operator on $\mathrm{L}_{2}(\mathrm{M})$ is denoted by d ([7]).
(4) See A. Gray [3].

If ∇ is an arbitrary C^{∞} connection on E , consider

$$
\tilde{\nabla}=\nabla+\tilde{r}^{\alpha} \mathrm{H} \quad \alpha \in \mathbf{R}-0
$$

where \tilde{r} is the function introduced in $\S 2$ and H is a $\operatorname{Hom}(\mathrm{E}, \mathrm{E})$-valued 1-form on E such that it is bounded on M and its first derivatives are bounded in modulus by $\tilde{r}^{-1} \mathrm{C}$ with C constant.

The "connection" $\tilde{\nabla}$ is in general not C^{∞}; indeed it is singular.
We will construct in the usual way the Chern forms on E via $\tilde{\nabla}$, provided that the forms that appear belong to $\mathrm{L}_{2}(\mathrm{M})$, which thus replaces the ordinary de Rham complex.

More precisely, let $\mathrm{I}_{h}(\mathrm{G})$ be the vector space of the h-forms on the Lie algebra of G symmetric and invariant with respect to $\mathrm{G}=\mathrm{GL}(q, \mathbf{C})$ and let

$$
\mathrm{W}_{d}: \mathrm{I}_{h}(\mathrm{G}) \rightarrow \mathrm{H}_{d}^{*}(\mathrm{M} ; \mathbf{C}) \quad \mathrm{W}_{d}=\iota^{*} \circ \mathrm{~W}
$$

the Weil homomorphism respect to the L_{2}-cohomology, being $\mathrm{W}: \mathrm{I}_{h}(\mathrm{G}) \rightarrow$ $\rightarrow \mathrm{H}^{*}(\mathrm{M} ; \mathbf{C})$ the usual Weil homomorphism.

If $\tilde{\Omega}=\widetilde{\Omega}(\mathbf{E}, \tilde{\nabla})$ is the curvature form associated with $\tilde{\nabla}$, consider the invariant polynomials $\varphi_{h}(\tilde{\Omega})$, defined by setting

$$
\operatorname{det}\left(\lambda \mathbf{I}+\frac{1}{2 \pi i} \tilde{\Omega}\right)=\sum_{h=0}^{q}(-1)^{h} \varphi_{h}(\Omega) \lambda^{q-h}
$$

where

$$
\varphi_{h}(\tilde{\Omega})=\varphi(\tilde{\Omega}, \cdots, \tilde{\Omega}) \quad \varphi \in \mathrm{I}_{h}(\mathrm{G})
$$

is the h-th Chern form.
Then the h-th Chern class constructed via $\tilde{\nabla}$ is

$$
\begin{equation*}
\tilde{c}_{h}(\mathrm{E}, \tilde{\nabla})=\mathrm{W}_{d}\left(\varphi_{h}(\tilde{\Omega})\right) \tag{3.2}
\end{equation*}
$$

After we shall see that
Lemma A. If $\varphi_{h}(\tilde{\Omega})$ is the h-th Chern form with respect to $\tilde{\nabla}$ and $\varphi_{h}(\Omega)$ is the analogous with respect to ∇, then they are L_{2}-cohomological.

Therefore

$$
\tilde{c}_{h}(\mathrm{E}, \tilde{\nabla})=\mathrm{W}_{d}\left(\varphi_{h}(\tilde{\Omega})\right)=\mathrm{W}_{d}\left(\varphi_{h}(\Omega)\right)=\iota^{*}\left(\mathrm{~W}\left(\varphi_{h}(\Omega)\right)=\iota^{*}\left(c_{h}(\mathrm{E}, \nabla)\right) .\right.
$$

Now let ∇^{\prime} be an other C^{∞} connection and

$$
\tilde{\nabla}^{\prime}=\nabla^{\prime}+\tilde{r}^{\alpha} \mathrm{H}
$$

be constructed as above, then from

$$
c_{h}(\mathrm{E}, \nabla)=c_{h}\left(\mathrm{E}, \nabla^{\prime}\right)=c_{h}(\mathrm{E})
$$

it follows

$$
\tilde{c}_{h}(\mathrm{E}, \tilde{\nabla})=\tilde{c}_{h}\left(\mathrm{E}, \tilde{\nabla}^{\prime}\right)=\tilde{c}_{h}(\mathrm{E}) .
$$

The class $\tilde{c}_{h}(\mathrm{E})$ is called h-th L_{2}-Chern class of the bundle E .
We can now state the main result:
Theorem A. Call $k=m-n$ the codimension of the submanifold N in M , the under the stated assumptions,

$$
\tilde{c}(\mathrm{E})=\iota^{*}\left(c_{h}(\mathrm{E})\right)
$$

for

$$
\begin{array}{llll}
h<\frac{2-k}{4 \alpha} & \alpha \leq-1 ; & h<\frac{k}{2(1-\alpha)} & 0<\alpha \leq 1 \\
h<\frac{k+2}{2(1-\alpha)} & -1 \leq \alpha<0 ; & \forall h & \alpha \geq 1 .
\end{array}
$$

4. Proof of Theorem A

(4.1) As seen in (2.3) we can identify an open neighbourhood $\mathrm{V} \subset \mathrm{M}$ of an arbitrary point of the submanifold N with an open set W of \mathbf{R}^{m}, described through the coordinates $\left(x_{1}, \cdots, x_{m}\right)$, such that $\mathrm{V} \cap \mathrm{N}$ may be identified to an open set of

$$
\mathbf{R}^{n}=\left\{\left(x_{1}, \cdots, x_{m}\right) \mid x_{n+1}=x_{n+2}=\cdots=x_{m}=0\right\}
$$

(4.2) Now we shall determine under which conditions on α, m and n, the h - $t h$ Chern form $\widetilde{\varphi}_{h}=\varphi_{h}(\Omega)$ may be a cocycle in $\mathrm{L}_{2}(\mathrm{M})$, i.e. $\tilde{\varphi}_{h} \in \mathrm{~L}_{2}(\mathrm{M})$ and $d \widetilde{\varphi}_{h}=0$ in the sense of distributions.

Notice first that, but for the singular points, the form $\tilde{\varphi}_{h}$ is C^{∞} and satisfies as it is well known, $d \tilde{\varphi}_{h}=0$ in the classical sense.

Consider then the expression of $\bar{\varphi}_{h}$ on the chart of domain V:

$$
\tilde{\varphi}_{h}=\sum_{a} \varphi_{h}^{a} d x^{a} \quad a=\left(a_{1}, \cdots, a_{h}\right)
$$

it suffices to check when the first partial derivatives $\partial_{h}^{a} / \partial x^{i}$ are L_{2} on the whole manifold M , i.e., to check, being $\vec{u}(x)$ one of the derivatives, when one has

$$
\begin{equation*}
\int_{\tilde{\mathrm{U}}}|\tilde{u}(x)|^{2} \mathrm{~d} x<\infty \tag{4.3}
\end{equation*}
$$

for every open set \tilde{U} relatively compact in $W \subset \mathbf{R}^{m}$, which we can suppose bounded, for example of diameter ε.
(4.4) The concept of order of a function, and as a consequence of a form, will be used in an essential way.

Let $p \in \mathrm{M}$ belong to the ε-neighbourhood N_{ε} of N (introduced in $\S 2$) and as usual $r(p)=d(p, \mathrm{~N})$. A form ζ is said to be of order ν with respect to N , if all the components of $\zeta(p) / r(p)^{\nu}$ are bounded when $r(p)$ is infinitesimal.

We shall write $\operatorname{ord}_{N}(\zeta)=\nu$ or simply ord $(\zeta)=\nu$.
(4.5) In the above mentionned identification we can still denote by $r: \mathbf{R}^{m} \rightarrow[0, \infty)$ the distance function to the plane \mathbf{R}^{n}. Let $y=\left(y_{1}, \cdots, y_{n}\right)$ be a system of Euclidean coordinates in \mathbf{R}^{n} and let $(r, s)=\left(r, s_{1}, \cdots, s_{k-1}\right)$ be the polar coordinates in the plane \mathbf{R}^{k}, orthogonal to \mathbf{R}^{n} in \mathbf{R}^{m}.

If $\mathrm{M}_{k} r^{k-1} d r d s$ denotes the volume element in $\mathbf{R}^{k}, \mathbf{M}_{k}=$ const., we have

$$
\int_{\tilde{\mathrm{U}}}|\tilde{u}(x)|^{2} \mathrm{~d} x=\mathrm{M}_{k} \int_{\mathrm{U} \times \mathrm{S}^{k-1}}\left(\int_{0}^{\varepsilon}|\tilde{u}(y, r, s)|^{2} r^{k-1} \mathrm{~d} r\right) \mathrm{d} y \mathrm{~d} s
$$

where $\mathrm{U}=\tilde{\mathrm{U}} \cap \mathbf{R}^{n} \subset \mathbf{R}^{n}$.
If

$$
\tilde{u}(y, r, s)=u(y, r, s)+r^{\nu} v(y, r, s)
$$

with $\nu=\operatorname{ord}(\tilde{u}-u)$, one has

$$
\begin{aligned}
\int_{0}^{\varepsilon}|\tilde{u}|^{2} r^{k-1} \mathrm{~d} r & \leq \int_{0}^{\varepsilon}|u|^{2} r^{k-1} \mathrm{~d} r+2 \int_{0}^{\varepsilon}|u||v| r^{\nu+k-1} \mathrm{~d} r+\int_{0}^{\varepsilon}|v|^{2} r^{2 v+k-1} \mathrm{~d} r \leq \\
& \leq \mathrm{C}_{1} \int_{0}^{\varepsilon} r^{k-1} \mathrm{~d} r+\mathrm{C}_{2} \int_{0}^{\varepsilon} r^{\nu+k-1} \mathrm{~d} r+\mathrm{C}_{3} \int_{0}^{\varepsilon} r^{2 \nu+k-1}
\end{aligned}
$$

whence the conclusion (4.3) if

$$
\begin{equation*}
2 \nu+k>0 \tag{4.6}
\end{equation*}
$$

since $k>0$. By taking into account the value $\nu=\operatorname{ord}\left(\mathrm{d} \tilde{\varphi}_{h}-\mathrm{d} \varphi_{h}\right)$, which will be calculated in the next section, the theorem is thus completely proved.

5. Estimate of the order of Chern forms

(5.1) If ∇ is a connection on E , denote by $\left(\omega_{j}^{i}\right)(i, j=1, \cdots, q)$ the matrix of the connection form (1-form) and by (Ω_{j}^{i}) the matrix of the curvature form (2-form) associated with ∇. Then

$$
\Omega_{j}^{i}=\mathrm{d} \omega_{j}^{i}+\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k}
$$

which will be written simply

$$
\begin{equation*}
\Omega=\mathrm{d} \omega+\omega \wedge \omega \tag{5.2}
\end{equation*}
$$

Likewise for the connection $\tilde{\nabla}$.
It follows from the definition on $\tilde{\nabla}$ that

$$
\tilde{\omega}=\omega+\tilde{r}^{\alpha} \mathrm{H}
$$

then

$$
\operatorname{ord}(\tilde{\omega}-\omega)=\alpha
$$

Thus it follows from

$$
\mathrm{d} \tilde{\omega}=\mathrm{d} \omega+\left(\mathrm{d} \tilde{r}^{\alpha}\right) \mathrm{H}+\tilde{r}^{\alpha} \mathrm{dH}
$$

on account of (2.4), that ${ }^{(5)}$

$$
\operatorname{ord}(\mathrm{d} \tilde{\omega}-\mathrm{d} \omega)=\alpha-1
$$

We premise the following lemma which will be useful in the sequel
(5.4) Lemma. Let $\tilde{\mathrm{A}}$ and $\tilde{\mathrm{B}}$ be two forms such that $\tilde{\mathrm{A}}=\mathrm{A}+\tilde{r}^{\alpha} \mathrm{F}, \tilde{\mathrm{B}}=$ $=\mathrm{B}+\tilde{r}^{\beta} \mathrm{G}$ with $\alpha \leq \beta$ and $\mathrm{A}, \mathrm{B}, \mathrm{F}, \mathrm{G}$ bounded. Then

$$
\begin{aligned}
\operatorname{ord}(\tilde{\mathrm{A}} \wedge \tilde{\mathrm{~B}}-\mathrm{A} \wedge \mathrm{~B}) & =\alpha, & & \beta \geq 0 \\
& =\alpha+\beta, & & \beta \leq 0
\end{aligned}
$$

Proof.

$$
\begin{gathered}
\tilde{\mathrm{A}} \wedge \tilde{\mathrm{~B}}=\left(\mathrm{A}+\tilde{r}^{\alpha} \mathrm{F}\right) \wedge\left(\mathrm{B}+\tilde{r}^{\beta} \mathrm{G}\right)=\mathrm{A} \wedge \mathrm{~B}+\tilde{r}^{\beta} \mathrm{A} \wedge \mathrm{G}+\tilde{r} \mathrm{~F} \wedge \mathrm{~B}+\tilde{r}^{\alpha+\beta} \mathrm{F} \wedge \mathrm{G} \\
\operatorname{ord}(\tilde{\mathrm{~A}} \wedge \tilde{\mathrm{~B}}-\mathrm{A} \wedge \mathrm{~B})=\min (\alpha, \beta, \alpha+\beta)
\end{gathered}
$$

whence the conclusion.
(5.5) Corollary. If $\tilde{\mathrm{A}}=\mathrm{A}+\tilde{r}^{\alpha} \mathrm{F}$, then

$$
\begin{aligned}
\operatorname{ord}(\tilde{\mathrm{A}} \wedge \cdots \wedge \underset{h \text { times }}{\tilde{\mathrm{A}}} \wedge \cdots \wedge \mathrm{~A}) & =\alpha, & & \alpha \geq 0 \\
& =h \alpha, & & \alpha \leq 0
\end{aligned}
$$

(5.6) Thus it follows that

$$
\begin{aligned}
\operatorname{ord}(\tilde{\omega} \wedge \tilde{\omega}-\omega \wedge \omega) & =\alpha, & & \alpha \geq 0 \\
& =2 \alpha, & & \alpha \leq 0
\end{aligned}
$$

(5) Recall that under our assumptions we have $\alpha \neq 0$, so that all the intervals in which α varies belong to $\mathbf{R}-0$, even though that will not be explicitly mentioned.
whence by (5.2)

$$
\begin{aligned}
\operatorname{ord}(\tilde{\Omega}-\Omega) & =\alpha-1, & & \alpha \geq-1 \\
& =2 \alpha, & & \alpha \leq-1 .
\end{aligned}
$$

(5.7) Consider now

$$
\tilde{\phi}_{h}(\tilde{\Omega})=\phi(\tilde{\Omega}, \cdots, \tilde{\Omega})=\Sigma \delta_{i_{1} \cdots i_{h}}^{j_{1} \cdots \tilde{\Omega}_{j_{1}}^{i_{1}}} \wedge, \cdots, \wedge \tilde{\Omega}_{j_{h}}^{i_{h}}
$$

briefly

$$
\tilde{\phi}_{h}=\tilde{\Omega} \wedge \cdots \wedge \tilde{\Omega} \quad h \text { times }
$$

From (5.5) we deduce

$$
\begin{aligned}
\operatorname{ord}\left(\tilde{\phi}_{h}-\phi_{h}\right) & =2 h \alpha, & & \alpha \leq-1 \\
& =h(\alpha-1), & & -1 \leq \alpha \leq 1 \\
& =\alpha-1 \quad, & & \alpha \geq 1 .
\end{aligned}
$$

(5.8) We shall now estimate ord $\left(\mathrm{d} \tilde{\phi}_{h}-\mathrm{d} \phi_{h}\right)$. Observe that

$$
\mathrm{d} \tilde{\phi}_{h}=\mathrm{d}(\tilde{\Omega} \wedge \cdots \wedge \tilde{\Omega})=(\mathrm{d} \tilde{\Omega}) \wedge \tilde{\Omega} \wedge \cdots \wedge \tilde{\Omega}+\cdots+\tilde{\Omega} \wedge \cdots \wedge \tilde{\Omega} \wedge(\mathrm{d} \tilde{\Omega})
$$

and

$$
\mathrm{d} \tilde{\Omega}=\mathrm{d} \tilde{\omega} \wedge \tilde{\omega}-\tilde{\omega} \wedge \mathrm{d} \tilde{\omega}
$$

Putting $\tilde{\theta}=\tilde{\Omega} \wedge \cdots \wedge \tilde{\Omega}(h-1$ times $)$ and keeping in mind that $\operatorname{ord}(\mathrm{d} \tilde{\Omega}-\mathrm{d} \Omega)=\alpha-1, \quad \alpha>0 \quad$ ord $(\tilde{\theta}-\theta)=2(h-1) \alpha \quad, \quad \alpha \leq-1$

$$
\begin{aligned}
; & =(h-1)(\alpha-1), \quad-1 \leq \alpha \leq 1 \\
=2 \alpha-1, \quad \alpha<0 & =\alpha-1 \quad, \quad \alpha \geq 1,
\end{aligned}
$$

and finally examining the various cases, by (5.4), one has for $h \geq 1$

$$
\begin{array}{rlr}
\operatorname{ord}\left(\mathrm{d} \tilde{\phi}_{h}-\mathrm{d} \phi_{h}\right)=2 h \alpha-1 & \alpha \leq-1 \tag{5.9}\\
& =h \alpha-h+\alpha & -1 \leq \alpha<0 \\
& =h(\alpha-1) & 0<\alpha \leq 1 \\
& =\alpha-1 & \alpha \geq 1,
\end{array}
$$

which is the value we needed to complete the proof.

6. Proof of Lemma A

(6.1) Denote by $\nabla_{t}=(1-t) \nabla+t \tilde{\nabla}$ with $t \in[0,1]$ the homotopy between ∇ and $\tilde{\nabla}$ and by Ω_{t} the corresponding curvature form ${ }^{(6)}$.

From (4.2) it follows

$$
\Omega_{t}=\Omega+\alpha t \tilde{r}^{\alpha-1} \mathrm{H}+t \tilde{r}^{\alpha} \mathrm{dH}+\omega \wedge t \tilde{r}^{\alpha} \mathrm{H}+t \tilde{r}^{\alpha} \mathrm{H} \wedge \omega+t^{2} \tilde{r}^{\alpha} \mathrm{H} \wedge \tilde{r}^{\alpha} \mathrm{H}
$$

hence for $t \in(0,1]$ one has

$$
\begin{aligned}
\operatorname{ord}\left(\Omega_{t}-\Omega\right) & =\alpha-1 & & \alpha \geq-1 \\
& =2 \alpha & & \alpha \leq-1 .
\end{aligned}
$$

(6.2) Consider the (2h-1)-forms

$$
\psi^{i}(t)=\varphi\left(\Omega_{t}, \cdots, \frac{\mathrm{~d}}{\mathrm{~d} t} \omega_{t}, \cdots, \Omega_{t}\right) \quad i=1, \cdots, h
$$

where the i-th place is $\frac{\mathrm{d}}{\mathrm{d} t} \omega_{t}=\tilde{\omega}-\omega, \omega_{t}$ being the connection form associated to ∇_{t}.

It is easy to see that

$$
\begin{aligned}
\operatorname{ord}\left(\psi^{i}(t)\right) & =2 h \alpha-\alpha & \alpha \leq-1 \\
& =h(\alpha-1)+1 & -1 \leq \alpha \leq 1 \\
& =\alpha & \alpha \geq 1
\end{aligned}
$$

also

$$
\operatorname{ord}\left(\tilde{\varphi}_{h}-\varphi_{h}\right)<\operatorname{ord}\left(\psi^{i}(t)\right) \quad \forall i=1, \cdots, h ; t \in(0,1]
$$

hence it follows that $\psi^{i}(t) \in \mathrm{L}_{2}(\mathrm{M})$ if $\widetilde{\varphi}_{h} \in \mathrm{~L}_{2}(\mathrm{M})$, on account of (4.6).
Similarly one proves that

$$
\operatorname{ord}\left(\mathrm{d} \bar{\varphi}_{h}-\mathrm{d} \varphi_{h}\right)<\operatorname{ord}\left(\mathrm{d} \psi^{i}(t)\right)
$$

whence the conclusion that $\mathrm{d} \psi^{i}(t) \in \mathrm{L}_{2}(\mathrm{M})$ too, if $\mathrm{d} \tilde{\varphi}_{h} \in \mathrm{~L}_{2}(\mathbf{M})$.
Then the lemma is proved, remembering that

$$
\varphi(\widetilde{\Omega}, \cdots, \tilde{\Omega})-\varphi(\Omega, \cdots, \Omega)=\mathrm{d}\left[\int_{0}^{1} \sum_{1=0}^{h} \psi^{i}(t) \mathrm{d} t\right]
$$

and that the integrant is a polynomial in t.
(6) The proof is similar to that in N. Teleman [6].

7. The case of the tangent bundle

(7.1) We consider now the particular case in which \mathbf{M} is an almost complex manifold and E is the tangent bundle of M . On every fibre $\mathrm{E}_{p}(p \in \mathrm{M})$ it is possible to define a Hermitian metric g_{p}, induced by the Riemannian structure Γ and invariant by the almost complex structure.

If $\tilde{r}(p)$ is the function introduced above, we consider in E_{p} the new sesquilinear form

$$
\tilde{g}_{p}=\tilde{r}(p)^{\alpha} g_{p} \quad \alpha \in \mathbf{R}-0
$$

which is not, in general, C^{∞}, nay it is singular.
(7.2) We will find a relationship between the Christoffel symbol $\widetilde{\Gamma}_{i j}^{k}$, constructed via \tilde{g}, and the symbol $\Gamma_{i j}^{k}$, constructed via g. Setting

$$
\tilde{g}_{i j}=\tilde{r}^{\alpha} g_{i j}
$$

one has

$$
\begin{aligned}
{[i, \bar{j}, s] } & =\frac{1}{2}\left(\partial_{j} \tilde{g}_{j s}+\partial_{i} \tilde{g}_{i j}-\partial_{s} \tilde{g}_{i j}\right)=\tilde{r}^{\alpha}[i, j, s]+ \\
& +\frac{1}{2} \alpha \tilde{r}^{\alpha-1}\left[\left(\partial_{j} \tilde{r}\right) g_{i s}+\left(\partial_{i} \tilde{r}\right) g_{j s}-\left(\partial_{s} \tilde{r}\right) g_{i j}\right]
\end{aligned}
$$

where $\partial_{h}=\partial / \partial x_{h} . \quad$ Because

$$
\tilde{g}^{k s}=\tilde{r}^{-\alpha} g^{k s}
$$

one has

$$
\tilde{\Gamma}_{i j}^{k}=\tilde{g}^{k s}[\widetilde{i, j}, s]=\Gamma_{i j}^{k}+\frac{1}{2} \alpha g^{k s} \tilde{r}^{-1}\left[\left(\partial_{j} \tilde{r}\right) g_{i s}+\left(\partial_{i} \tilde{r}\right) g_{j s}-\left(\partial_{s} \tilde{r}\right) g_{i j}\right]
$$

hence

$$
\tilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\tilde{r}^{-1} \mathrm{H}_{i j}^{k}
$$

where

$$
\mathrm{H}_{i j}^{k}=\frac{1}{2} \alpha g^{k s}\left[\left(\partial_{j} \tilde{r}\right) g_{i s}+\left(\partial_{i} \tilde{r}\right) g_{j_{s}}-\left(\partial_{s} \tilde{r}\right) g_{i j}\right]
$$

is bounded by (2.4) and $\left|\partial_{h} \mathrm{H}_{i j}^{k}\right|<\mathrm{Cr}^{-1}$ with C constant.
Then for the connection form

$$
\tilde{\omega}_{i}^{k}=\Gamma_{i j}^{k} \mathrm{~d} x^{j}
$$

one has

$$
\tilde{\omega}_{i}^{k}=\omega_{i}^{k}+\tilde{r}^{-1} \mathrm{H}_{j}^{k}
$$

where

$$
\mathrm{H}_{i}^{k}=\mathrm{H}_{i j}^{k} \mathrm{~d} x^{j} .
$$

If ∇ (resp. $\tilde{\nabla}$) is the Riemannian connection associated to g (resp. \tilde{g}), from (7.3) one has

$$
\tilde{\nabla}=\nabla+r^{-1} \mathrm{H}
$$

hence from theorem A , by putting $\alpha=-1$, it follows.
Theorem B. Let M be a compact almost complex manifold and N a closed submanifold of M of codimension k. Call $\tilde{r}: \mathrm{M} \rightarrow \mathbf{R}$ an extension of the geodesic distance from $p \in \mathrm{M}$ to N (defined on a neighbourhood of N). Let $\mathrm{E}=\mathrm{TM}$ the tangent bundle of M and g_{p} an arbitrary C^{∞} Hermitian metric on E_{p}. The form on E defined as

$$
\tilde{g}_{p}=\tilde{r}(p)^{\alpha} g_{p} \quad \alpha \in \mathbf{R}-0
$$

is generally singular. If $c_{h}(\mathrm{E})$ (resp. $\left.\tilde{c}_{h}(\mathrm{E})\right)$ denotes the h-th Chern class, constructed from the Riemannian connection induced by g (resp. \tilde{g}), then

$$
\tilde{c}_{h}(\mathrm{E})=\iota^{*}\left(c_{h}(\mathrm{E})\right) \quad h<(k-2) / 4
$$

where ι^{*} is the L_{2}-de Rham-isomorphism.

8. L_{2}-Pontrjagin classes

(8.1) Let M be a differentiable compact Riemannian manifold and let E be its real, tangent bundle.

As in $\S 7$, we consider on every fibre $\mathrm{E}_{p}(p \in \mathrm{M})$ and inner product g_{p} and the bilinear form

$$
\tilde{g}_{p}=\tilde{r}(p)^{\alpha} g_{p}
$$

Then, as in §3, it is possible to construct the Pontrjagin classes L_{2} of $\mathrm{M}, \tilde{\mathrm{P}}_{h}(\mathrm{M})=\tilde{p}_{h}(\mathrm{TM})$.

If Ω is the curvature form of the connection ∇, associated to g, then the explicit expression of the Pontrjagin classes is given by

$$
\begin{equation*}
\mathrm{P}_{h}(\mathrm{M})=\left[\frac{[(2 h)!]^{2}}{\left(2^{h} h!\right)(2 \pi)^{2 h}} \sum_{(i)} \theta_{i_{1} \cdots i_{2 h}}^{(2 h)} \wedge \theta_{i_{1} \cdots i_{2 h}}^{(2 h)}\right] \tag{8.2}
\end{equation*}
$$

where

$$
\theta_{i_{1} \cdots i_{s}}^{(s)}=\frac{1}{s!} \sum_{(j)} \delta\left(i_{1}, \cdots, i_{s} ; j_{1}, \cdots, j_{s}\right) \Omega_{j_{1} j_{2}} \wedge \cdots \wedge \Omega_{j_{s-1} j_{s}}
$$

s is an even integer and $\delta\left(i_{1}, \cdots, i_{s} ; j_{1}, \cdots, j_{s}\right)$ is the generalised Kronecker symbol.

Then, by $\S 6$, we construct ∇, associated to g, and it turns out that ord $(\tilde{\Omega}-\Omega)=-2$. Putting

$$
\psi_{h}=\Sigma \theta \wedge \theta
$$

15. - RENDICONTI 1982, vol. LXXIII, fasc. 6.
one has

$$
\operatorname{ord}\left(\mathrm{d} \tilde{\phi}_{h}-\mathrm{d} \psi_{h}\right)=-4 h-1
$$

and by (4.6)

$$
-2(4 h+1)+k>0
$$

whence

$$
\tilde{\mathrm{P}}_{h}(\mathrm{M})=i^{*}\left(\mathrm{P}_{h}(\mathrm{M})\right) \quad h<(k-2) / 8
$$

Bibliography

[1] R. Bott and S. S. Chern (1965) - Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, "Acta Math.", vol. 114, (71), 71-112.
[2] J. Cheeger (1980) - On the Hodge Theory of Riemannian Pseudomanifolds, "Proc. of Symp. in Pure Math.», 36, Providence AMS, 91-146.
[3] A. Gray (1982) - Comparison theorems for the volumes of tubes as generalizations of the Weil tube formula, "Topology", vol. 21 (2), 201-228.
[4] D. Lehmann (1981)-Résidus des connexions à singularités et classes caractéristiques, "Ann. Inst. Fourier», (31), 1, 83-98.
[5] D. Sullivan (1973) - Differential forms and the topology of Manifolds, «Proc. Tokyo Conference on Manifolds ».
[6] N. Teleman (1972) - A characteristic ring of a Lie algebra extension, I, «Rend. Acc. Naz. Lincei», vol. LII, aprile, 498-506.
[7] N. Teleman (1980) - Combinatorial Hodge theory and signature operator, «Inventiones math.», 61, 227-249.

