ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

LADISLAV BICAN

A remark on hyper-indecomposable groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **72** (1982), n.6, p. 318–321.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1982_8_72_6_318_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Teoria dei gruppi. — A remark on hyper-indecomposable groups (*). Nota di LADISLAV BICAN, presentata (**) dal Corrisp. I. BARSOTTI.

RIASSUNTO. — Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».

An indecomposable torsionfree abelian group is said to be hyper-indecomposable if all proper subgroups between its divisible hull and itself are indecomposable. The purpose of this brief note is to describe the class of hyper-indecomposable groups by local properties and to prove that the homogeneous groups from this class are characterized by the factor-splitting property (the existence of homogeneous and non-homogeneous hyper-indecomposable groups up to rank 2^{\aleph_0} is proved in [7]). For the sake of completeness we include the descriptions of hyper-indecomposable groups obtained by Benabdallah and Birtz in [1].

All the groups considered are abelian. The set of all integers is denoted by \underline{Z} , \underline{N} is the set of all positive integers, $\underline{N}_0 = \underline{N} \cup \{0\}$, and \underline{Z}_p is the group of all rationals with denominators prime to p. If G is a (mixed) group then the symbol $h_p^G(g)(\tau^G(g), \hat{\tau}^G(g) \text{ resp.})$ denotes the p-height (the characteristic, the type resp.) of the element g in the group G. The divisible hull of a group G is denoted by D(G); $G[p^{\infty}]$ is the subgroup of G consisting of all elements of infinite p-height. Other notation and terminology will be essentially that as is [8].

Recall some basic definitions. The elements x_1, x_2, \dots, x_n of a torsionfree group G are said to be *p*-independent in G if any relation $px = \sum_{i=1}^{n} a_i x_i$, $a_1, a_2, \dots, a_n \in \underline{Z}, x \in G$, implies $p \mid a_i, i = 1, 2, \dots, n$. If $\alpha_i = \{a_i^{(k)}\}_{k=1}^{\infty}$, $a_i^{(k)} \in \underline{Z}, 0 \le a_i^{(k)} < p^k, a_i^{(k)} \equiv a_i^{(k+1)} \pmod{p^k}, i = 1, 2, \dots, n, k = 1, 2, \dots$, are *p*-adic integers then $\sum_{i=1}^{n} \alpha_i x_i \equiv 0 \pmod{p^{\infty}}$ means that for every $k = 1, 2, \dots$ it is $\sum_{i=1}^{n} \alpha_i^{(k)} x_i = p^k x^{(k)}$ for suitable $x^{(k)} \in G$. If the relation $\sum_{i=1}^{n} \alpha_i x_i \equiv 0 \pmod{p^{\infty}}$ always implies $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$ then the elements x_1, x_2, \dots, x_n are said to be p^{∞} -independent. A subset $M \subseteq G$ is called *p*-independent

(*) This work was written while the author was a visiting professor supported by Italian C.N.R.

(**) Nella seduta del 25 giugno 1982.

i

 $(p^{\infty}$ -independent) if each of its finite subsets is so. Every maximal *p*-independent $(p^{\infty}$ -independent) subset of G is a *p*-basis $(p^{\infty}$ -basis). We denote by p^{∞} -dim G the cardinality of any p^{∞} -basis of G. It is easy to see that every *p*-independent set is p^{∞} -independent and consequently independent (see [9]).

LEMMA. Let g, h be independent elements of a torsionfree group G and let $(g, h)_p$ be the p-pure closure of (g, h) in G. Then the following are equivalent:

- (i) g, h are p^{∞} -independent;
- (ii) $\langle g, h \rangle_p / \langle g, h \rangle$ is finite;
- (iii) $\langle g, h \rangle_p$ contains p-independent elements a, b.

Proof. $(i) \iff (ii)$. See [9] Lemma 1.

 $(ii) \Rightarrow (iii)$. Without loss of generality we can assume that $h_p^G(g) = h_p^G(h) = 0$. It is easy to see that then $\langle g, h \rangle_p / \langle g, h \rangle$ is a cyclic group of order p^k for some $k \in \underline{N}_0$. Now $p^k b = g + rh$ for suitable $b \in \langle g, h \rangle_p$, $r \in \underline{Z}$, and a = g, b are p-independent in G, for otherwise pw = sa + tb, $w \in \overline{G}$, $s, t \in \underline{Z}$, gives $p^{k+1}w = (p^k s + t)g + trh$ and $p \mid t, \langle g, h \rangle_p / \langle g, h \rangle$ being of order p^k . Then $p \mid s$ owing to the hypothesis $h_p^G(g) = 0$.

(*iii*) \Rightarrow (*ii*). Obviously, αg , $\beta h \in \langle a, b \rangle$ and $p^r a$, $p^r b \in \langle g, h \rangle$ for suitable α , β , $r \in \underline{N}$. If $x \in \langle g, h \rangle_p$ is arbitrary, $p^k x \in \langle g, h \rangle$, then $p^k \alpha \beta x \in \langle a, b \rangle$ and consequently $\alpha \beta x \in \langle a, b \rangle$, a, b being *p*-independent. Thus $p^r \alpha \beta x \in \langle g, h \rangle$, $\langle g, h \rangle_p / \langle g, h \rangle$ is bounded and hence finite.

A torsionfree group G is said to be hyper-indecomposable if all proper subgroups of D(G) containing G are indecomposable. D. W. Dubois [7] has called a torsionfree group G cohesive if G/S is divisible for every non-zero pure subgroup S of G.

If p is a prime, then a torsionfree group G of rank at least 2 is said to be a *p*-*i*-group (*p*-irational group) if for every pair (a, b) of independent elements of G and every $i \in \underline{N}$ there is $n_i \in \underline{N}_0$, $n_i < p^i$, such that $h_p^G(a + p^{\alpha-\beta} n_i b) \ge i + \alpha$, $\alpha = h_p^G(a)$, $\beta = h_p^G(b)$, and the *p*-adic number $\eta(a, b) = \lim p^{\alpha-\beta} n_i$ is not rational (see [1]).

THEOREM 1. Let G be a reduced torsionfree group and D be its divisible hull. Then the following are equivalent:

(i) For every prime p with $G \neq pG$ it is $G[p^{\infty}] = 0$ and $p^{\infty} - \dim G = 1$;

(ii) For every prime p with $G \neq pG$ it is $G[p^{\infty}] = 0$ and |G/pG| = p;

- (iii) G is a p-i-group for every prime p with $G \neq pG$;
- (iv) G is cohesive;
- (v) G + E = D for every non-zero divisible subgroup E of D;
- (vi) G is hyper-indecomposable;

(vii) For every prime $p, G_p = G \otimes \underline{Z}_p$ is either divisible or hyper-indecomposable;

(viii) G_p is reduced and $D/G_p \cong Z(p^{\infty})$ for every prime p with $G_p \neq D$; (ix) G_p is cohesive for every prime p.

Proof. (i) \Rightarrow (ii). Any two elements of G are *p*-dependent.

 $(ii) \Rightarrow (i)$. If G contains two p^{∞} -independent elements g, h then $(g, g)_p$ contains two p-independent elements by Lemma.

 $(i) \Rightarrow (iii)$. Obviously, if $a, b \in G$ are independent then $\eta_p(a, b)$ is not rational if and only if $|\langle a, b \rangle_p / \langle a, b \rangle| = \infty$, which means that a, b are p^{∞} -dependent (by Lemma).

 $(i) \Rightarrow (iv)$. Let $S \neq 0$ be pure in $G, g \in G \setminus S$ be arbitrary. If p is a prime with $G \neq pG$, choose an element $h \in S$ with $h_p^G(g) = h_p^G(h)$. Then the *p*-dependence of the elements g, h gives the existence of a *p*-adic integer $\alpha = \{a_k\}_{k=1}^{\infty}$ such that $g + \alpha h \equiv 0 \pmod{p^{\infty}}$. So $p^k x_k = g + a_k h$ for suitable $x_k \in G$; hence $p^k(x_k + S) = g + S$, $k \in \underline{N}$, and G/S is divisible.

 $(iv) \Rightarrow (v)$. The subgroup $S = E \cap G$ is pure in G and so $(G + E)/E \cong G/S$ is divisible. Thus G + E is divisible.

 $(v) \Rightarrow (vi)$. Let a subgroup H, $G \subseteq H \subseteq D$, be decomposable, H == H₁ \oplus H₂, and let p be a prime such that H is not p-divisible. Then one of H₁, H₂, say H₁, is not p-divisible and G + D(H₂) \neq D contradicts the hypothesis.

 $(vi) \Rightarrow (vii)$. Obvious, since $G_p \subseteq D_p = D$.

 $(vii) \Rightarrow (viii)$. If $G_p \neq D$ then G_p is clearly reduced and if E is a rank one pure subgroup of D then $G_p + E = D$ and $D/G_p \simeq E/G_p \cap E \simeq Z(p^{\infty})$.

 $(viii) \Rightarrow (ix)$. If G_p is not divisible and S is pure in G_p , E = D (S), then $(G_p + E)/G_p \simeq E/E \cap G_p$ is divisible. Hence $G_p + E = D$ and $G_p/S = G_p/G_p \cap E \simeq D/E$ is divisible.

 $(ix) \Rightarrow (i)$. If $G \neq pG$ then G_p is reduced and so $G[p^{\infty}] = 0$. Let g, h be independent elements of G. Then $G_p/\langle h \rangle_*$ (the pure closure in G_p) is divisible and h can be chosen such that $h_p^G(g) = h_p^G(h)$. Hence for each $k \in \mathbb{N}$ there is $a_k \in \mathbb{N}$ and $x_k \in G_p$ with $p^k x_k = g + a_k h$. Now it is easy to see that $x_k \in G$ and $\alpha = \{a_k\}_{k=1}^{\infty}$ is a *p*-adic integer; therefore $g + \alpha h \equiv 0 \pmod{p^{\infty}}$ proves the p^{∞} -dependence of g, h in G.

Remark. The equivalence of (ii) and (iv) has been proved in [7] while the equivalence of (iii), (iv), (v) and (vi) has been proved in [1]. It should be noted that by a slight modification of some examples in [8] the indecomposable non-cohesive \underline{Z}_p -modules can be constructed.

A sequence g_0, g_1, \cdots of elements of a mixed group G is said to be a *p*-sequence of g_0 if $pg_{i+1} = g_i, i = 0, 1, \cdots$. If G is a mixed group with the torsion part T such that G/T is divisible then G splits if, and only if, every element $g \in G \setminus T$ has a non-zero multiple mg which has a *p*-sequence in G for each prime p (see [3] and [2]).

Recall that a torsionfree group G is said to be factor-splitting if all of its factor-groups split. If G is factor-splitting then every pure subgroup of G is factor-splitting, and if G is of rank two then it is factor-splitting if, and only if, for any two independent elements $g, h \in G$ it is $(\langle g \rangle_* \oplus \langle h \rangle_*) \otimes \underline{Z}_p =$ $= G \otimes \underline{Z}_p$ for almost all primes p with $h_p^G(g) \neq h_p^G(h)$ (see [6] and [4]).

THEOREM 2. A hyper-indecomposable torsionfree group G is homogeneous if, and only if, it is factor-splitting.

Proof. Suppose that G is a non-divisible homogeneous hyper-indecomposable group. Let $H \neq 0$ be an arbitrary subgroup of G and $S = \langle H \rangle_*$ be the pure closure of H in G. By Theorem 1 (iv) G/S is divisible, so that with respect to Corollary 2 of [3] it suffices to show that every element $g' \in G \setminus S$ has a non-zero multiple g such that the element g + H has a p-sequence in G/H for each prime p. If $0 \neq h \in H$ is arbitrary then every element $g' \in G \setminus S$ has a non-zero multiple g with $\tau^G(g) \geq \tau^G(h)$, G being homogeneous. If G is p-divisible then g + H has obviously a p-sequence in G/H. If G is not p-divisible then the elements g, h are p^{∞} -dependent by Theorem 1 (i) so that there is a p-adic integer $\alpha = \{a_k\}_{k=1}^{\infty}$ such that $g + \alpha h \equiv 0 \pmod{p^{\infty}}$. Consequently, for each $k \in \underline{N}$ it is $p^k x_k = g + a_k h$ for suitable $x_k \in G$ and if $a_{k+1} = a_k + p^k t_k$, $t_k \in \underline{N}_0$, then $p^{k+1} x_{k+1} = g + a_{k+1} h = p^k (x_k + t_k h)$ yields $px_{k+1} = x_k + t_k h$ and $x_0 + H = g + H$, $x_1 + H$, \cdots is the desired p-sequence.

Suppose now that G is factor-splitting and let $g, h \in G$ be elements of different types. By Lemma 2 of [6] the pure subgroup $S = \langle g, h \rangle_*$ of G is factor-splitting and consequently, by Theorem 1 of [4], for almost all primes p with $h_p^G(g) \neq h_p^G(h)$ it is $(\langle g \rangle_* \oplus \langle h \rangle_*)_p = S_p$. This contradicts Theorem 1 (*ix*) since any pure subgroup of a cohesive group is obviously cohesive.

References

- K. BENABDALLAH and A. BIRTZ (1981) Hyper-indecomposable groups, «Abelian group theory, Proceedings, Oberwolfach, Lecture Notes in Mathematics », 874, 70-75.
- [2] L. BICAN (1970) Mixed abelian groups of torsionfree rank one, «Czech. Math. J.», 20, 232-242.
- [3] L. BICAN (1971) A note on mixed abelian groups, «Czech. Math. J. », 21, 413-417.
- [4] L. BICAN (1970) Factor-splitting abelian groups of rank two, «Comment. Math. Univ. Carolinae », 11, 1-8.
- [5] L. BICAN (1976) Factor-splitting abelian groups of finite rank, « Comment. Math. Univ. Carolinae », 17, 473-480.
- [6] L. BICAN (1978) Factor-splitting abelian groups of arbitrary rank, « Comment. Math. Univ. Carolinae », 19, 653-672.
- [7] D. W. DUBOIS (1965) Cohesive groups and p-adic integers, «Publ. Math. Debrecen », 12, 51-58.
- [8] L. FUCHS (1970-1973) Infinite abelian groups I, II, Academic Press.
- [9] L. PROCHÀZKA (1981) p∞-basic subgroups of torsionfree abelian groups, « Abelian group, theory, Prodcedings, Oberwolfach, Lecture Notes in Mathematics », 874, 127–153.