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Meccanica dei solidi. — Determination of creep, fatigue and 
activation energy from constant strain-rate experiments. Nota <*) del Socio 
M ic h ele  C a p u t o .

Riassunto. — Si interpretano i risultati degli esperimenti fatti su mezzi anelastici 
mediante applicazione di deformazioni crescenti linearmente nel tempo. Si trova che 
dai risultati di questi esperimenti, si può risalire alla funzione di creep che viene deter
minata con tre diversi modelli di approssimazione. Si trova inoltre che per decidere 
sul comportamento a lungo termine dei materiali sono necessari esperimenti a più 
lungo termine di quelli fatti.

Si dimostra poi che le relazioni classiche che rappresentano il comportamento dei 
materiali anelastici implicano un indurimento del mezzo e talora anche il fenomeno di 
fatica. Si suggerisce infine un metodo per determinare il numero di cicli che porta 
alla fatica. Come applicazione, usando dati di laboratorio a varie temperature e defor
mazioni linearmente crescenti nel tempo, si determinano la funzione di creep e l’energia 
di attivazione, entrambe dipendenti dalla temperatura, della Halite policristallina.

Introduction

Anelastic properties of materials are mathematically represented by the 
following relations (e.g. Caputo, Mainardi, 1971)

t

(i)

s (f) —  j h (t — t) a (t) dT 
ò t

G { t )=  j  h (t — t)  £ (t) dT 
0

where £ (t) is strain, a (t) is stress, h and h are called the causal functions and 
represent the response of the system to a unit impulse 5 (t) of stress and strain 
respectively. Instead of the impulse response in practice one observes the 
response of the stress (mL(t)) to a step of strain or the response of the strain 
{cx (0) to a steP °f stress. We have in this case

t

£ (t) — c1 (0) a (t) +  j  Cx (t — t) a (t) dr 

(2) 5 *

cr (t) =  m1 (0) £ (t) +  j  mi (t — t)  £ (t) dT 
o

(#) Presentata nella seduta del 24 aprile 1982.
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from which follows

(3)
h{t) =  c1{0)l>(f) +  c'1{t) 

h (£) =  m1 (0) $ (t) +  tn[ (t) .

The functions cx (t) and m1 (t) are usually referred to as creep compliance 
and relaxation modulus. If we assume that the integrals appearing in (2) are 
higher order with respect to the other terms, then the stress-strain relations in 
which the integral term appears operating on linear combination of stress and 
strain (Caputo, Mainardi, 1971) are practically equivalent to (3).

Introducing the Laplace transforms in (1) and (2) we have with obvious 
notation

(4)
E{p) =  n { p ) S { p ) = p c 1{p)S{p)  

s  (P) =  H (P) E (p) =  p  M , (p) E (p)

which imply the following compatibility condition.

(5) H (p) H (p) = p z Cx (j>) Mjl (/>) =  ! .

T he constant strain rate experiment

Some recent laboratory experiment (Carter and Heard, 1970; Cangi et al., 
1981) have been made to observe the response of the system to a constant rate 
of strain instead of a step of stress.

In order to see the meaning of these experiments let us consider strains and 
stresses which are linear function of time

(6) e==t , a =  t

and introduce the following relations in which appear the new functions c2(t) 
and m2 (t)

t

(7)

cr (£) =  m2 (0) zr (t) +  m2 (0) s (t) +  j  m2 (t — t) s (t) dT
ot

£ (t) =  C2 (0) g' (t) +  C% (0) G (t) +  J C2 (it  t)  G (t) dT .
0

Introducing (6) in (7) we obtain

a (t) =  m2 (t)
(8)

e ( 0 =  *a(0-
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Which imply that m2 (i) and c2 (t) represent the response of the system to a 
constant rate of strain and stress respectively.

If we substitute

(9)
e = l ( f )

a =  1 (t)

in (7) we obtain the relaxation modulus and the compliance respectively, 

«1 (t) =  m2 (0) 8 (*) +  m'z (t) 

cx (t) =  c2 (0) 8 (t) +  c2 (t)
( 10)

which imply that the laboratory experiments made with constant rate of strain 
or stress in practice give the same information, as the experiment with a step 
of strain or stress. The compatibility conditions for m2 (t) and c2 (t) are 
obtained by taking the Laplace transforms of (7)

a i )

S =  LP2 M 2 (p) —  s (0) mt (0)] E

E =  [p* C2 (J>) — a (0) c2 (0)] S

C,(p) = g.(0)g(0)
p 2

1
/>2 M 2 (/>) — jw2(0) s (0) ■

If o- (0) =  e (0) =  0, we obtain using (10 and 11)

(0 =  -— £■ * LT-1 {[M2 (p)]-'}

( 12)

ci (t) =  {~ 2^  * L T -i {[M2 (p)]-i) .

Therefore, the laboratory experiments giving the response to a constant 
strain rate supply also the response to a constant stress rate and to a step of stress.

Laboratory experiments (Gangi 1981) show that m2(0) =  0 and that m2(t) 
with good approximation is

(13) m2 (t) =  a0 e a* +  b0 e~ ^ +  c0 , a0 +  b0 -f- c0 =  0

by substitution in (12) we find

(14) cx (t) =  — (a0 oc +  b0 j3)-1 — (a0 +  60)-1 * +

aQb0(ci—  p)2
+

K  +  &o)2 (a^o +  $K) (1
«3 («o +  fro) t

e  aa0 +  3&o )  .
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Many authors tried to fit the experimental data, obtained applying constant 
strain rate, by assuming that b0 =  0. In this case one obtains

a s )  * ( * ) = — (! +  “*) ’ •oc«o a o

It is thus clear that the second exponential in (13) causes an increase of the 
initial rate of creep, as it is seen from

(16) c'x (0
1

ao "I- K
ap M<*— ft)2
(««o +  ft&o)2

e
«3 (ap+ b0)
<XttQ + 3̂0

Since ao < 0 , b o < 0  and c\ (t) >  0, the zero of (16) gives a minimum for 
(14). For large values of t (14) is linear as (15). From m2 (t) on may obtain the 
complex index of refraction n (e.g. Caputo Mainardi: 1971) by setting p ~  zoo 
(co =  frequency)

n (co) = ko (Ql (zoo) | +1/2
*i(0) )

In turn n gives the Q-1 and the dispersion of the phase velocity. The results 
of this section, namely formulae (10) through (16), can also be obtained by 
direct use of (1) or (2).

T he Generalized experiments

The previous reasoning can be extended to the response of the system to 
strain and stress of the following type:

(17) e =  zn tn~x , a —  an tn' x , n >  0 , n integer

introducing the following relations
t

t  =  S i  [  1 ■ • w 4 T “ l )  ( 0 ) j  +  j  (t —  t )  s ( t )  d T

(IB)
t

6 =  i j i  [- • <£~%) (°)] +  J (t — t) <* (') dT
0

where mn (t) , cn (t) are functions to be determined. Substituting (17) in (18) 
we obtain

(19) G =  ( n -  1)! mn (t) , s =  (» -  1)1 (*).

Therefore mn (t) and cn (t) represent the response of the system to strain and 
stresses given by (17).
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The compatibility condition, if (0) =  cr«> (0) =  0 (for * =  0 ,1  , - - * 
• • • ,»  — 2), is

(20) p * - M n{p)Cn(j> )= \ .

If we assume in (18) s (t) and a (t) as given in (9) we obtain the relaxation 
modulus and the compliance respectively

(21)

Therefore,

(22)

a =  m% (t) 

e =  c£-1) ( t).

nti (t) =  (t)

Ci (t) =  cf-'^t)

which imply that the response of the system to a stress, or strain represented 
in the time domain by a (n — 1) power of the time is given by the (n — l)-integral 
of the material functions Ci(£) and m1(t).

Another stress strain relation

A satisfactory fit of the data obtained with constant rate of strain is obtained 
using the stress strain relation introduced by Caputo (1982).

where #*,(**=1,2), 0 <  <  1, are real. Caputo (1982) showed that rela
tion (23) implies dissipation with (considering that m > b> d > a)

,OA\ A -l ft- Vo • a . 7UV!Q ~  g» srn sin

dispersion of the phase velocity v of waves

/oe\ 1 l /  pd / i  WV2 b 7TV2 wVl a mi  \

and also fatigue (Caputo 1979) giving the number of cycles which may bring 
the medium to fatigue. The experimental data obtained with constant strain 
rate can be advangegeously represented using (23). In fact, assuming b =  c —  0 
a —  1, s =  s0t, (23) gives

(26) ^ S o M l - ^ ) !
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which in turn implies that the creep c1(t) is 

(27) c1(t) =  s0f*l(z2) \

It is to be noted that the basic difference between (15), (16) and (27) is that in 
(15) and (16), after a sufficiently long time, the creep rate is constant, while (27) 
represents a mechanism with a creep rate decreasing with time. Only experi
mental data covering a sufficiently long time interval can decide which creep 
law considered is more realistic.

T he F atigue

In a recent paper (Hsi-Ping Liu and Louis Peselnik 1979) demonstrate 
that mechanical hysteresis loop shapes for a linear anelastic solid satisfying con
stant over a wide frequency range are sensitive to cycling stress waveform. 
Cusped or asymmetrical hysteresis loops are compatible with linear anelastic 
behavior for nonsinusoidal loading and do not necessarily imply a nonlinear 
attenuation mechanism.

The same was proved in a previous paper (Caputo 1976) using the same saw 
tooth strain model of Hsi-Ping Liu and Louis Peselnik (1979) and the almost 
frequency independent model of Caputo (1967). In another paper Caputo (1979) 
also proved that the same almost frequency independent model (Caputo 1967) 
using the Boltzmann after effect equation, explains the phenomenon of fatigue 
of the elastic materials with almost frequency independent implying that also 
the phenomenon of fatigue does not necessarily imply a non linear mechanism 
and is strictly related to that of attenuation. We shall see here that fatigue 
may occur in the linear field not only in the media which behave according to 
the model of Caputo (1967) but could occur also in the media behaving according 
to the more general model described by (2);

We shall show that the stress strain relations imply a time variation of the 
ratio between the applied strain and the resulting stress (or of the ratio between 
the applied stress and the resulting strain, which in turn imply fatigue). To 
see this let us apply to (2) a cyclic input and substitute for c1 (t) and m1 (t) the 
creep and relaxation functions (£) and ^ (0

(28) Ci (t) =  C0 +  (t) , Mi (t) =  *«oo +  4* (*)

with
f  (*) >  0 , r  (t) <  o , <M°) =  o

(0 <  0 , r  (t) ^  o , <{> (oo) =  finite .

If the cyclic inputs are

(29) e =  e0 sin co0 t , a =  cr0 sin co01 , M0 =  27t/T0
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We may compute the output at the time A =  (n - f  1/4) T 0, n >  0
A

2 7uA C
g (ft) =  £0 m i  (0) sin —Fj-î— +  s0 I mi (A —  t )  sin co0 t  dv =

A 0
■—' £0 ^oo 0̂ w0 /  sin co0 # (5:) dz

(30) 0 a

e (n) =  cr0 c1 (0) sin &>0 A +  a0j  c[ (A — t) sin <o0 t dsr =
A 0

=  G0 C2 +  G0 C00 j  sin CO0 # 4» (#) dz  .
0

Let us consider a (ft) first, ^ (£) is an analitic positive and decreasing function 
with (t) —  0 only on a finite set and with lim (t) =  0 then it can be shown

t ->oo
that g (ft) is an increasing function of n. This can be proved as follows. 
Let us consider

( n - 1/4) T0

U(n) =  e. |  sin co0 z  <J> (s) dz
(tt—3/4) T0 

(» + l/4 )T 0

V (ft) =  s0j  sin a) z  4» (#) dz
(n—1/4) T0

and that sin w0 z  is antisymmetric with respect to z  =  (n — T 0 (and z  =  nVQ 
respectively) one may see that, since <J/' (z) <  0 then U (n) >  0, (V (ft) <  0 
respectively). Also considering that sin&>0# is symmetric with respect to the 
point z — {n — J) T 0 and <{/' (#) >  0 we may see that

(32)1 I V (») I <  U (ft) , U(ft) +  V( f t ) >0 .

Consider now
T/4

(33) g (m) =  s0 I sin cù0zty (z) dz +  m00 +  2m  (U (m) +  V (m)) 
j  10

for ft -> 00 we obtain a series of positive and negative terms decreasing in 
absolute values which converges, then lim G (n) =  'G

n —»oo
This implies that the ratio between g  (n) and s (ft) is increasing or there is 

hardening of the material. This hardening can be defined as follows.
Let A (ft) be

(n+i/4)T0

A (ft) =  ^ g -  j  sin co0z  (s) dz
° (n—3/4) Tq

(34)
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A (n) is positive ; the ratio

(35) A(w)
« (» )

can be defined the stress hardening of the material. Since A (n) is decreasing 
function of n with lim A (n) —  0 and a (n) is an increasing function of n then

n->oo
the hardening is a decreasing function of n.

If ô  is larger than the stress a* which gives failure then fatigue will occur. 
Consider now s (n). Since (t) is a positive monotonie increasing function 

of £, s (n) is decreasing. The ratio of a (n) to £ (n) is increasing and the material 
becomes harder. As for a (n) we may see that lim £ (n) —  s . If s is larger than

n-> oo
the strain £* which give failure with ct= cj then fatigue would occur.

We may define strain hardening of the ratio
(n—1/4) T0

(36) ~^nj~ ’ A (n) ~ —i = j ^ f sinMozty(z)dz.
(n -3/4) T0

If ~g >  o* (or s >  £*) the value of n which gives ô  =  cr* (i =  £*) is of great prac
tical interest because it indicates the number of cycles which would bring ma
terial to fatigue. An estimate of it can be obtained from the knowledge of the 
functions cx (t) or ^ (t) which in turn can also be estimated as follows introducing 
the index of refraction n — nr — in*

[p C, (P)iir‘! =  nr -  in, =  nr ( l  -  i - Ç - )

(37) v ^  =  nr {9 c0)llz

where v is the phase velocity.
The inversion of (37) gives

(38) Cl( t ) =  J \pp v (/»)]-! ( l - Q - ‘ (? ) )^ d «
B r

where Br indicates a Biomwich path.

A pplication to experimental results

Laboratory experiments (Gangi 1981, Heard 1972) give the values of a0 , 
b0 , c0 a ,  p for transient and steady state deformation of polycrystalline Halite 
at pressures from 20 MPa to 200 MPa, strain reates very near 1.1 lO^sec-1
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and the temperatures indicated in Fig. 1. Formula (16) allows to estimate the 
steady state creep — (a0 +  &0)-1 which is shown in Fig. 1 and indicates that, in 
the temperature ranges considered, the creep is a linear function of the tem
perature.

0.20r

*

0.15

<ï-
O
"O

0.10

*

0.05

*

0.001--------— —I---------------------------- L- 1-1
0 100 200 300 400

TEMPERATURE (°C)
Fig. 1. -  Steady state creep of polycrystalline Halite as function of the tem
perature at 20 MPa (dots) and 200 MPa (asterisk). The ordinate is (MPa sec)” 1.

It is generally accepted that the steady state rate of creep is related to the 
temperature as follows
(39) <ki(f)  K c-(Q/r)(t+278)

àt

where Q is the activation energy, k is a factor with dimension (MPæ sec)-1 which 
depends on the material and the stress, and R is the gas constant. If dcx (t)ldt 
is a function of the temperature as indicated in Fig. 1 then

~ ^ = = / (T)

and from (39) follows that

Q =  — R (273 +  T) In [ /  (T )/T ].
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For polycrystalline Halite and 100 °C <  T  <  300 °C, assuming K =  109’40 
(MPa sec)-1 from Heard’s (1972) data, (associated to Q /R=11.5 (K Cal mole-1) 
at 173 MPa and T  =  200 °C) we obtain tentatively

- R  =  (273 +  T) [25.33 — In (0.49 +  0.39-IO- 2 T  +  0.31 - IO-4 T 2) ] .
R

Analysis of the data shown in figures 1, 2, 3, 4 and 5 of Heard’s (1972) paper 
on the laboratory tests on polycrystalline Halite show that for this material the 
relations (7) are valid only in limited ranges of strain rate as for instance it is 
the case in geologic phenomena. The results of this section are valid for strain 
rates around 1.1 *10-4 sec-1.
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