Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Solomon G. Mikhlin

Some theorems on the stability of numerical processes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 72 (1982), n.2, p. 71-76.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1982_8_72_2_71_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Analisi numerica. - Some theorems on the stability of numerical processes ${ }^{(*)}$. Nota ${ }^{(* *)}$ del Socio straniero Solomon G. Mikhlin.

Riassunto. - Nell'articolo si dimostrano alcuni teoremi sulla stabilità dei processi numerici di Ritz e della collocazione in rapporto agli errori di "distorsione».

1. Let us consider a numerical process which consists in solving a sequence of independent equations

$$
\begin{equation*}
\mathrm{A}_{n} x^{(n)}=f^{(n)} ; \quad n=1,2, \cdots \tag{1}
\end{equation*}
$$

Here $\boldsymbol{X}^{(n)} \in \mathrm{X}_{n}, f^{(n)} \in \mathrm{Y}_{n} ; \mathrm{A}_{n}$ is an operator acting from X_{n} into $\mathrm{Y}_{n} ; \mathrm{X}_{n}, \mathrm{Y}_{n}$ are metric spaces. In this paper we only consider the case when X_{n}, Y_{n} are separable Banach spaces (in the sections 2-4-Hilbert spaces) and A_{n} are linear operators. Processes (1) arise, for example, when one uses the Ritz method (particularly, the finite elements method) for solving linear equations. In these cases the operators A_{n} and the right-hand terms $f^{(n)}$ are not given a priori. How it is natural, they are calculated with some errors. As a result we have to solve equations of a certain " distorted" sequence

$$
\begin{equation*}
\left(\mathrm{A}_{n}+\Gamma_{n}\right) z^{(n)}=f^{(n)}+\delta^{(n)} \tag{2}
\end{equation*}
$$

instead of sequence (1).
We say that the process (1) is stable, with respect to the distortions errors, in the sequence of pairs of spaces $\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right)$ if there exist positive numbers p, q, r, such that the inequality $\left\|\Gamma_{n}\right\|_{\mathrm{x}_{n} \rightarrow \mathrm{x}_{n}} \leq r$ involves the estimate

$$
\begin{equation*}
\left\|z^{(n)}-x^{(n)}\right\|_{\mathrm{x}_{n}} \leq p\left\|\Gamma_{n}\right\|_{\mathrm{x}_{n} \rightarrow \mathrm{x}_{n}}+q\left\|\delta^{(n)}\right\|_{\mathrm{x}_{n}} \tag{3}
\end{equation*}
$$

Some other definitions of stability are also possible.
It is demonstrated in [1] that the process (1) is stable, according to the above definition if and only if the conditions

$$
\begin{equation*}
\left\|\mathrm{A}_{n}^{-1}\right\|_{\mathrm{y}_{n} \rightarrow \mathrm{x}_{n}} \leq c_{1},\left\|\mathrm{~A}_{n}^{-1} \mathrm{~B}_{n} x^{(n)}\right\|_{\mathrm{X}_{n}} \leq c_{2} \tag{4}
\end{equation*}
$$

are fulfilled; here c_{1}, c_{2} do not depend on $n, x^{(n)}$ is the solution of (1) and B_{n} is an arbitrary operator with unit norm, acting from X_{n} into Y_{n}.
2. Let us consider the equation

$$
\begin{equation*}
\mathrm{A} x=f \tag{5}
\end{equation*}
$$

(*) Dedicated to Prof. G. Fichera on the occasion of his 60th birthday.
(**) Presentata nella seduta del 13 febbraio 1982.
where A is a positive definite [2] operator acting in a separable Hilbert space \mathbf{H}; we designate by H_{A} the energy space of the operator A , for the definition see [2]. We choose a sequence of finite-dimensional subspaces $H_{A}^{(n)} \subset H_{A}$; let this sequence be complete in H_{A}. We put $\operatorname{dim} \mathrm{H}_{\mathrm{A}}^{(n)}=\mathrm{N}(n)=\mathrm{N}$. Further let $\left(\varphi_{n 1}, \varphi_{n 2}, \cdots, \varphi_{n \mathrm{~N}}\right)$ be a basis in $\mathrm{H}_{\mathrm{A}}^{(n)}$. Following the Ritz method one constructs the approximate solution $x^{(n)}$ of (5) as an element of $\mathrm{H}_{\mathrm{A}}^{(n)}$

$$
x^{(n)}=\sum_{k=1}^{N} a_{k}^{(n)} \varphi_{n k}
$$

with coefficients $a_{n}^{(k)}$ satisfying the system of equations

$$
\begin{equation*}
\mathrm{M}_{n} a^{(n)}=f^{(n)} . \tag{6}
\end{equation*}
$$

Here M_{n} is the matrix of elements $\left[\varphi_{n k}, \varphi_{n j}\right] ; a^{(n)}$ and $f^{(n)}$ are vectors in R_{N} with components $\left(a_{1}^{(n)}, a_{2}^{(n)}, \cdots, a_{\mathrm{N}}^{(n)}\right)$ and $\left(f, \varphi_{n 1}\right),\left(f, \varphi_{n 2}\right), \cdots,\left(f, \varphi_{n \mathrm{~N}}\right)$ respectively. The indices j, k change in the limits $1 \leq j, k \leq \mathrm{N}$; the square and round brackets designate the inner product in H_{A} and H respectively.

Remark. We obtain the classical Ritz method, if $\forall n, \mathrm{H}_{\mathrm{A}}^{(n)} \subset \mathrm{H}_{\mathrm{A}}^{(n+1)}$ [3]. The idea of using subspaces $H_{A}^{(n)} \notin \mathrm{H}_{\mathrm{A}}^{(n+1)}$ is due to Courant [4]; this idea contains the basis of the finite elements method.

Let A_{n} be the operator acting in R_{N} and generated by the matrix M_{n}. If $a^{(n)}$ and $f^{(n)}$ are treated as elements of R_{N}, then one can write the equation (6) in the form

$$
\begin{equation*}
\mathrm{A}_{n} a^{(n)}=f^{(n)} \tag{7}
\end{equation*}
$$

It is demonstrated in [5] (see also [6]) that the numerical process (7) for the classical Ritz process is stable in the sequence $\left(R_{N}, R_{N}\right)$ if and only if the least eigenvalue $\lambda_{1}^{(n)}$ of the matrix M_{n} is bounded below by a positive constant. The proof can be transferred without change on the case of non-expanding subspaces H_{A}.
3. We investigate now the stability of the Ritz process in the general case inf $\lambda_{1}^{(n)} \geq 0$. We introduce two N-dimensional Hilbert spaces X_{N} and Y_{N} with the norms

$$
\begin{equation*}
\forall b \in \mathrm{R}_{\mathrm{N}} ;\|b\|_{\mathrm{x}_{\mathrm{N}}}=\sqrt{\lambda_{1}^{(n)}}\|b\|_{\mathrm{R}_{\mathrm{N}}},\|b\|_{\mathrm{x}_{\mathrm{N}}}=\frac{1}{\sqrt{\lambda_{1}^{(n)}}}\|b\|_{\mathrm{R}_{\mathrm{N}}} \tag{8}
\end{equation*}
$$

Let us designate here by A_{n} the operator generated by the matrix M_{n} and acting from X_{N} into Y_{N}; the vectors $a^{(n)}$ and $f^{(n)}$ are treated as elements of X_{N} and Y_{N} respectively.

Theorem 1. The process (7) is stable in the sequence $\left(\mathrm{X}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{N}}\right)$.
It is sufficient to prove that the inequalities (4) are satisfied.
Let $v^{(n)} \in H_{A}^{(n)}$, then

$$
\begin{equation*}
v^{(n)}=\sum_{k=1}^{N} b_{k}^{(n)} \varphi_{n k} ; \tag{9}
\end{equation*}
$$

if we put $b^{(n)}=\left(b_{1}^{(n)}, b_{2}^{(n)}, \cdots, b_{\mathrm{N}}^{(n)}\right)$, we obtain

$$
\begin{equation*}
\left\|v^{(n)}\right\|^{2}=\left(\mathrm{M}_{n} b^{(n)}, b^{(n)}\right)_{\mathrm{R}_{\mathrm{N}}} \geq \lambda_{1}^{(n)}\left\|b^{(n)}\right\|_{\mathrm{R}_{\mathrm{N}}}^{2}=\left\|b^{(n)}\right\|_{\mathrm{x}_{\mathrm{N}}}^{2} \tag{10}
\end{equation*}
$$

|. 1 designates the norm in H_{A}. Now

$$
\begin{equation*}
\left\|\mathrm{A}_{n}^{-1}\right\|_{\mathrm{Y}_{n} \rightarrow \mathrm{x}_{n}}=\sup _{b \in \mathrm{R}_{\mathrm{N}}} \frac{\left\|\mathrm{~A}_{n}^{-1} b\right\|_{\mathrm{x}_{\mathrm{N}}}}{\|b\|_{\mathrm{Y}_{\mathrm{N}}}}=\lambda_{1}^{(n)} \sup _{b \in \mathrm{R}_{\mathrm{N}}} \frac{\left\|\mathrm{M}_{n}^{-1} b\right\|_{\mathrm{R}_{\mathrm{N}}}}{\|b\|_{\mathrm{R}_{\mathrm{N}}}}=1 \tag{11}
\end{equation*}
$$

hence the first inequality (4) is proved.
The Ritz method converges in H_{A} for the equation (5), because A is positive definite [2]. Consequently, $\left|x^{(n)}\right| \leq c_{3}=$ const; according to (10), $\left\|a^{(n)}\right\| \mathrm{x}_{\mathrm{N}} \leq c_{3}$. Now $\left\|\mathrm{A}_{n}^{-1} \mathrm{~B}_{n} a^{(n)}\right\| \leq c_{3}$, and the second inequality (4) is also proved.
4. Formula (9) defines an operator Π_{n} which transforms any vector $b^{(n)} \in \mathrm{R}_{\mathrm{N}}$ in an element $v^{(n)} \in \mathrm{H}_{\mathrm{A}}^{(n)}$, so that $v^{(n)}=\Pi_{n} a^{(n)}$. The operator Π_{n} is invertible: $b^{(n)}=\Pi_{n}^{-1} v^{(n)}$; particularly, $a^{(n)}=\Pi_{n}^{-1} x^{(n)}$. Substituting this in (7), we obtain the numerical process giving the approximate solution $x^{(n)}$:

$$
\begin{equation*}
\mathrm{A}_{n} \Pi_{n}^{-1} x^{(n)}=f^{(n)} . \tag{12}
\end{equation*}
$$

Theorem 2. The numerical process (12) is stable in the sequence $\left(\mathrm{H}_{\mathrm{A}}^{(n)}, \mathrm{Y}_{\mathrm{N}}\right)$.
We use the method of [7] in order to prove Theorem 2.
Let Γ_{n} and $\delta^{(n)}$ be the distortions of A_{n} and $f^{(n)}$ respectively, and let $c^{(n)}$ be the solution of the distorted equation

$$
\begin{equation*}
\left(\mathrm{A}_{n}+\Gamma_{n}\right) c^{(n)}=f^{(n)}+\delta^{(n)} . \tag{13}
\end{equation*}
$$

The distorted approximate Ritz solution is $\mathfrak{z}^{(n)}=\Pi_{n} c^{(n)}$, and

$$
\begin{gathered}
\left\|z^{(n)}-x^{(n)}\right\|^{2}=\left(\mathrm{M}_{n}\left(c^{(n)}-a^{(n)}\right), c^{(n)}-a^{(n)}\right)_{\mathrm{R}_{\mathrm{N}}} \leq \\
\leq\left\|\mathrm{A}_{n}\left(c^{(n)}-a^{(n)}\right)\right\|_{\mathrm{x}_{\mathrm{N}}} \cdot\left\|c^{(n)}-a^{(n)}\right\|_{\mathrm{x}_{\mathrm{N}}} .
\end{gathered}
$$

According to Theorem 1 there exist numbers $p, q, r>0$ with the following property: if $\left\|\Gamma_{n}\right\|_{\mathrm{x}_{\mathrm{N}} \rightarrow \mathrm{y}_{\mathrm{N}}} \leq r$, then

$$
\left\|c^{(n)}-a^{(n)}\right\| \mathrm{x}_{\mathrm{N}} \leq p\left\|\Gamma_{n}\right\|_{\mathrm{x}_{\mathrm{N}} \rightarrow \mathrm{x}_{\mathrm{N}}}+q\left\|\delta^{(n)}\right\|_{\mathrm{x}_{\mathrm{N}}}
$$

It follows from (7) and (13) that

$$
\left(\mathrm{A}_{n}+\Gamma_{n}\right)\left(c^{(n)}-a^{(n)}\right)=\left(\mathrm{I}_{n}+\Gamma_{n} \mathrm{~A}_{n}^{-1}\right) \mathrm{A}_{n}\left(c^{(n)}-a^{(n)}\right)=\delta^{(n)}-\Gamma_{n} a^{(n)}
$$

where I_{n} is the identical operator in Y_{n}. Let r^{\prime} be a number in the interval $(0,1)$, and let $\left\|\mathrm{A}_{n}^{-1}\right\| \cdot\left\|\Gamma_{n}\right\|_{\mathrm{X}_{\mathrm{N}} \rightarrow \mathrm{X}_{\mathrm{N}}} \leq r^{\prime}$. Then

$$
\left\|\left(\mathrm{I}_{n}+\Gamma_{n} \mathrm{~A}_{n}^{-1}\right)^{-1}\right\| \leq\left(1-r^{\prime}\right)^{-1}
$$

and

$$
\left\|\mathrm{A}_{n}\left(c^{(n)}-a^{(n)}\right)\right\| \leq \frac{1}{1-r^{\prime}}\left[c_{3}\left\|\Gamma_{n}\right\|_{\mathrm{x}_{\mathrm{N}} \rightarrow \mathrm{y}_{\mathrm{N}}}+\left\|\delta^{(n)}\right\|_{\mathrm{y}_{\mathrm{N}}}\right]
$$

Now obviously

$$
\begin{equation*}
\left|z^{(n)}-x^{(n)}\right| \leq p^{\prime}\left\|\Gamma_{n}\right\|_{\mathrm{X}_{\mathrm{N}} \rightarrow \mathrm{y}_{\mathrm{N}}}+q^{\prime}\left\|\delta^{(n)}\right\|_{\mathrm{Y}_{\mathrm{N}}} \tag{14}
\end{equation*}
$$

where p^{\prime}, q^{\prime} are suitable constants. Theorem 2 is proved.
Remark. One can define the norms in $\mathrm{X}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{N}}$ as follows:

$$
\begin{equation*}
\forall b \in \mathrm{R}_{\mathrm{N}} ;\|b\|_{\mathrm{X}_{\mathrm{N}}}=\gamma(n)\|b\|_{\mathrm{R}_{\mathrm{N}}},\|b\|_{\mathrm{Y}_{\mathrm{N}}}=\frac{1}{\gamma(n)}\|b\|_{\mathrm{R}_{\mathrm{N}}} . \tag{15}
\end{equation*}
$$

Here $\gamma(n)$ is any positive function of n, satisfying the inequality

$$
\forall b \in \mathrm{R}_{\mathrm{N}},\left|\Pi_{n} b\right| \geq \mathrm{C}_{\gamma}(n)\|b\|_{\mathrm{R}_{\mathrm{N}}} ; \mathrm{C}=\text { const },
$$

or, what is the same,

$$
\begin{equation*}
\lambda_{1}^{(n)} \geq \mathrm{C} \gamma^{2}(n) . \tag{16}
\end{equation*}
$$

In particular, it is sufficient that $\mu_{1}^{(n)} \geq \mathbf{C} \gamma^{2}(n)$, where $\mu_{1}^{(n)}$ is the least eigenvalue of the matrix of inner products $\left(\varphi_{n k}, \varphi_{n j}\right)_{\mathrm{H}} ; j, k=1,2, \cdots, \mathrm{~N}$. Theorems 1 and 2 with their proofs still hold, only the relation (11) must be replaced by the inequality $\left\|A_{n}^{-1}\right\|_{\mathrm{y}_{\mathrm{N}} \rightarrow \mathrm{x}_{\mathrm{N}}} \leq \mathrm{C}^{-1}$, where C is the constant of (16).

The theorems on stability of the finite elements method given in [8] are particular cases of the Theorems 1 and 2. The function $\gamma(n)$ used in [8] is equal to $h^{m / 2}$, where h is the step of the net and m is the dimension of the space of coordinates.
5. We consider now the problem of stability of the collocation method; this method was first formulated in [9]. The main points of the collocation method are the following. Let be given the problem of solving the equation (5) where A is a linear operator acting from a Banach space X into a Banach space Y, so that the domain $D(A)$ and the range $R(A)$ are dense in X and Y respectively. We suppose that Y consists only of functions which are continouus on a certain compact $\mathrm{K} \subset \mathrm{R}_{m}$. We choose a sequence of finite-dimensional
subspaces $\mathrm{X}_{n} \subset \mathrm{D}(\mathrm{A})$ which is complete in X and put $\operatorname{dim} \mathrm{X}_{n}=\mathrm{N}(n)=\mathrm{N}$, $\mathrm{Y}_{n}=\mathrm{AX}_{n}$. If the inverse operator A^{-1} exists then $\operatorname{dim} \mathrm{Y}_{n}=\mathrm{N}$. Further, if $\left\{\varphi_{n k}\right\}, 1 \leq k \leq \mathrm{N}$, is a basis in X_{n} and $\psi_{n k}=\mathrm{A} \varphi_{n k}$, then $\left\{\psi_{n k}\right\}$ is a basis in Y_{n}.

Let us choose some points $t_{k}^{(n)} \in \mathrm{K}, 1 \leq k \leq \mathrm{N}$, the so-called collocation knots. One constructs the approximate solution of (5) as an element of X_{n} :

$$
\begin{equation*}
x^{(n)}=\sum_{k=1}^{\mathrm{N}} a_{k}^{(n)} \varphi_{n k} ; \tag{17}
\end{equation*}
$$

the coefficients $a_{k}^{(n)}$ are to be defined from the algebraic system

$$
\begin{equation*}
\sum_{k=1}^{\mathrm{N}} a_{k}^{(n)} \psi_{k n}\left(t_{j}^{(n)}\right)=f\left(t_{j}^{(n)}\right) ; \quad 1 \leq j \leq \mathrm{N} \tag{18}
\end{equation*}
$$

6. Let $t_{j}^{(n)}$ be the vertices of a certain parallelepipedal net. Further let $h_{k}^{(n)}$ be the length of the edge of the parallelepiped which is parallel to the k-th coordinate axis. Suppose

$$
c_{1} h_{k}^{(n)} \leq h_{n} \leq c_{2} h_{k}^{(n)} \quad ; \quad c_{1}, c_{2}=\text { const }, h_{n} \xrightarrow[n \rightarrow \infty]{ } 0
$$

One can write down (18) in the form (6); the meaning of the notations is obvious. We consider $a^{(n)}$ as an element of R_{N} and $f^{(n)}$ as an element of the N -dimensional Hilbert space $\mathrm{F}_{\mathrm{N} s}$ with the norm $\|\cdot\| \mathrm{F}_{\mathrm{N} s}=h^{s / 2}\|\cdot\|_{\mathrm{R}_{\mathrm{N}}}$.

Let A_{n} be the operator generated by the matrix M_{n} and acting from R_{N} into $\mathrm{F}_{\mathrm{N} s}$. One can write the system (18) in the form (7).

Let $s_{n}^{(1)}$ designate the least singular number of the matrix M_{n}, i.e., the least eigenvalue of the non-negative matrix $\mathrm{M}_{n}^{*} \mathrm{M}_{n}$.

Theorem 3. If $\left\|a^{(n)}\right\| \leq c_{3}=$ const and $s_{1}^{(n)} \geq c_{4} h_{n}^{-s}$, where $c_{3}, c_{4}=$ $=$ const >0, then the process (7) for the collocation method is stable in the sequence $\left(\mathrm{R}_{\mathrm{N}}, \mathrm{F}_{\mathrm{N} s}\right)$. If $s_{1}^{(n)} \leq \gamma(n) h_{n}^{-s}, \gamma(n) \underset{n \rightarrow \infty}{\longrightarrow} 0$, then the same process in unstable.

Any numerical process of the kind (1) is stable if and only if the conditions (5) are fulfilled. It is easy to see that $\left\|\mathrm{A}_{n}^{-1}\right\|=h_{n}^{-s / 2}\left\|\mathrm{M}_{n}^{-1}\right\|_{\mathrm{R}_{\mathrm{N}} \rightarrow \mathrm{R}_{\mathrm{N}}}$. The greatest singular number of M_{n}^{-1} is equal to $1 / s_{1}^{(n)}$, hence $\left\|\mathrm{M}_{n}^{-1}\right\|_{\mathrm{R}_{\mathrm{N}} \rightarrow \mathrm{R}_{\mathrm{N}}}=1 / / s_{1}^{(n)}$; consequently $\left\|\mathrm{A}_{n}^{-1}\right\|=\left(h^{s} s_{1}^{(n)}\right)^{-1 / 2}$. If $s_{1}^{(n)} \leq \gamma(n) h_{n}^{-s}$ then $\left\|A_{n}^{-1}\right\| \geq 1 / \sqrt{\gamma(n)} \underset{n \rightarrow \infty}{\longrightarrow} \infty$, and the process (7) is unstable. On the contrary, if $s_{1}^{(n)} \geq c_{4} h_{n}^{-s}$ then $\left\|\mathrm{A}_{n}^{-1}\right\| \leq 1 / / \overline{c_{4}}$ and the first condition (5) is satisfied. The second condition (5) is satisfied by assumption, and the collocation process is stable.

References

[1] Mikhlin S. G. (1964) - On the stability of some numerical processes. "Dokl. Akad. Nauk SSSR», 157, N. 2, 271-273. English translation: "Soviet Math. Dokl.», 5, 931-933.
[2] Mikhlin S. G. (1957-1964) - Variational methods in mathematical Physics. Moscow. English translation: Pergamon Press, Oxford.
[3] Ritz W. (1908) - Über eine neue Methode zur Lösung gewisser Variations-probleme der mathmatischen Physik. Journ. f. d. reine und angewandte Mathematik», 135, H. 1.
[4] Courant R. (1943) - Variational methods for the solution of problems of equilibrium and vibrations. "Bull. Amer. Math. Soc.", 49, 1-23.
[5] Mikhlin S. G. (1960-1961) - On the stability of the method of Ritz. "Dokl. Akad. Nauk SSSR», 135, 16-19. English translation: «Soviet Math. Dokl.», 1, 12301233.
[6] Mikhlin S. G. (1971) - The numerical performance of variational methods, Moscow, 1966. English translation: Wolters-Noordhoff Publ., Groningen.
[7] Yaskova G. N., Yakovlev M. N. (1962) - Some condition for the stability of the method of Petrov - Galerkin. "Trudy Matem. in-ta im. ». Steklova, 66, 182-189.
[8] Mikhlin S. G. (1979) - Approximation on a rectangular grid. Sijthoff \& Noordhoff, Alphen aan den Rijn.
[9] Kantorovich L. V. (1934) - On a method for approximate solution of differential equations. "Dokl. Akad. Nauk SSSR ", 2, 532-536.

