Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Antonio Lanteri, Marino Palleschi

On the adjoint system to a very ample divisor on a surface and connected inequalities. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 71 (1981), n.6, p. 166-175.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1981_8_71_6_166_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria algebrica. - On the adjoint system to a very ample divisor on a surface and connected inequalities ${ }^{(*)}$. Nota II di Antonio Lanteri ${ }^{(* *)}$ e Marino Palleschi ${ }^{(* * *)}$, presentata ${ }^{(* * * *)}$ dal Corrisp. E. Marchionna.

Riassunto. - Si caratterizzano alcune classi di superfici in relazione all'indice di autointersezione dell'aggiunto ad un divisore molto ampio.

This Nota II is the second part of a work the first three sections of which appears in the same titled Nota I contained in the same tome of this review.

4. Rational surfaces ruled in conics

Theorem 3.1 supplies a characterization of the surfaces ruled in conics. In this sec. such surfaces are more closely studied in the rational case. We have

Theorem 4.1. Let $\mathrm{S} \subset \mathbf{P}^{n}$ be a regular surface with sectional genus $g \geq 2$. Then its general hyperplane section is a hyperelliptic curve if and only if S is a rational surface ruled in conics.

Proof. The if part is immediate. Indeed consider the morphism $\pi: S \rightarrow \mathbf{P}^{1}$ whose fibres are conics. Then the restriction $\left.\pi\right|_{\mathrm{H}}: \mathrm{H} \rightarrow \mathbf{P}^{\mathbf{1}}$ is a morphism of degree two. To see the only if part notice that the map $\Phi_{\mathrm{K}+\mathrm{H}}$ is a morphism taking values in $\mathbf{P}^{p_{g}+g-1}$, in view of Remark 1.3 and formula (1.3). Put $\Sigma=\Phi_{\mathrm{K}+\mathrm{H}}(\mathrm{S})$; of course Σ cannot be a point, being $g \geq 2$. Now fix a generic point $x \in \mathrm{~S}$. By assumption, on any smooth hyperplane section H through x there is a point y which is the conjugate of x in the hyperelliptic involution of H . So, by adjunction, $\Phi_{\mathrm{K}+\mathrm{H}}(x)=\Phi_{\mathrm{K}+\mathrm{H}}(y)$ for any point y conjugate of x and that holds for $x \in S$ out of a Zariski closed subset. Hence $\Phi_{\mathrm{K}+\mathrm{H}}$ cannot be generically finite and then $\operatorname{dim} \Sigma \neq 2$. So $\operatorname{dim} \Sigma=1$ and the map $\Phi_{\mathrm{K}+\mathrm{H}}: \mathrm{S} \rightarrow \Sigma$ is a morphism in view of Remark 1.3. The Stein factorization

(*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico «F. Enriques»-Via C. Saldini, 50-20133 Milano.
(***) Istituto Matematico - Via Università, 12 - 43100 Parma.
(****) Nella seduta del 21 novembre 1981.
shows that $\mathrm{K}+\mathrm{H}$ is algebraically equivalent to a finite sum of fibres of p; hence $(\mathrm{K}+\mathrm{H})^{2}=0$. Now, as $g \geq 2$, Theorem 3.1 says that S is ruled in conics; finally S is rational as $q=0$.

A classical result due to Enriques [8] claims that a surface $\mathrm{S} \subset \mathbf{P}^{n}$ whose general hyperplane section is a hyperelliptic curve is either a scroll or a rational surface. This fact together with the characterization given in Theorem 4.1 has the following

Corollary 4.1. Let $\mathrm{S} \subset \mathbf{P}^{n}$ be a surface with hypereliptic hyperplane sections of genus $g \geq 2$. Then S is either a scroll or a rational surface ruled in conics.

Remark 4.1. ([11], p. 434). For a surface $\mathrm{S} \subset \mathbf{P}^{4}$ of degree d the following formula holds

$$
\begin{equation*}
d^{2}-10 d+12 \chi\left(\mathcal{O}_{\mathrm{S}}\right)=2 \mathrm{~K}^{2}+5 \mathrm{HK} . \tag{4.1}
\end{equation*}
$$

Proposition 4.1. Let $\mathbf{S} \subset \mathbf{P}^{4}$ be a surface whose general hyperplane section is a hyperelliptic curve of genus $g \geq 2$. Then $g=2$ and S is a quintic rational surface represented on \mathbf{P}^{2} by a linear system of nodal quartics $\delta=\mid C_{4}-2 p_{1}-$ $-p_{2}-\cdots-\left.p_{3}\right|^{(4)}$ the points $p_{i}(i=1, \cdots, 8)$ being in general position.

Proof. It is known (see [13]) that in \mathbf{P}^{4} there are no scrolls of sectional genus $g \geq 2$. So, in view of Corollary $4.1, \mathrm{~S}$ can only be a rational surface ruled in conics. By Corollary 3.1, II and formula (4.1) one gets $g=\frac{1}{2}\left(d^{2}-7 d+14\right)$. So Castelnuovo's inequality (see [11], p. 351) implies $4 \leq d \leq 6$, but, as $g \geq 2$, it can only be $d \geq 5$. On the other hand, if $d=6$, one obtains $g=4$ and then (see [9], p. 247) the general hyperplane section of S would be a canonical curve. which is absurd. Then $d=5, g=2$ and we are done (e.g. see [14], Th. 5.1),

5. A second inequality and a characterization of the rational surfaces ruled in cubics

We need to point out some other properties of $|\mathrm{K}+\mathrm{H}|$.
Remark 5.1. Suppose S is neither a scroll nor ruled in conics. If $g \geq 3$, then $\Phi_{\mathrm{K}+\mathrm{H}}$ is a morphism and $\Sigma=\Phi_{\mathrm{K}+\mathrm{H}}(\mathrm{S})$ has dimension two. First of all $\operatorname{dim} \Sigma \geq 1$ in view of Proposition 3.1 and Lemma 2.4. Secondly $\Phi_{\mathrm{K}+\mathrm{H}}$ is a morphism by [25], Propositions 2.0 .1 and 1.5 . By absurd, suppose $\operatorname{dim} \Sigma=1$. The same argument on the Stein factorization, used before to conclude the proof of Theorem 4.1, shows that $(\mathrm{K}+\mathrm{H})^{2}=0$. This is absurd, by Theorem 3.1.
(4) Let p_{1}, \cdots, p_{r} be distinct (or infinitely near) points of P^{2}. As usual (see [11], p. 395) the symbol $\left|\mathrm{C}_{m}-s_{1} p_{1}-\cdots-s_{r} p_{r}\right|$ denotes the linear system of the plane curves of order m having a point of multiplicity s_{i} at $p_{i}(i=1, \cdots, r)$.

Remark 5.2. Let $\Phi: \mathrm{S} \rightarrow \mathrm{S}_{0}$ be a birational morphism taking values in a smooth surface S_{0}. If Φ contracts only r exceptional curves of the first kind, then Φ factorizes via r simultaneous blowings-up (i.e. the r blowings-up have distinct centers on S_{0}). Moreover, if $\Phi_{\mathrm{K}+\mathrm{H}}: \mathrm{S} \rightarrow \Sigma$ is a birational morphism, then
a) Σ has no isolated singularity;
β if Σ is smooth then $\Phi_{\mathrm{K}+\mathrm{H}}$ factorizes via simultaneous blowings-up. Suppose Φ factorizes via the blowings-up
$\mathrm{S}=\mathrm{S}_{r} \xrightarrow{\sigma_{r-1}} \mathrm{~S}_{r-1} \xrightarrow{\sigma_{r-2}} \cdots \xrightarrow{\sigma_{i+1}} \mathrm{~S}_{i+1} \xrightarrow{\sigma_{i}} \mathrm{~S}_{i} \xrightarrow{\sigma_{i-1}} \mathrm{~S}_{i-1} \longrightarrow \cdots \xrightarrow{\sigma_{0}} \mathrm{~S}_{0}$ and suppose, by absurd, the blowing-up σ_{i} has its center p on a curve Γ contracted by $\sigma_{i-1} \circ \sigma_{i-2} \circ \cdots \circ \sigma_{0}$. Then $\sigma_{i}^{*} \Gamma=\sigma_{i}^{-1}(\Gamma)+\mathbf{E}, \mathbf{E}$ being the exceptional curve of the first kind corresponding to p. Then

$$
-1 \geq \Gamma^{2}=\left(\sigma_{i}^{*} \Gamma\right)^{2}=\left(\sigma_{i}^{-1}(\Gamma)\right)^{2}+\varepsilon,
$$

with $\varepsilon \geq 1$. Then the proper transform of Γ in S_{i+1}, and then in S, is not an exceptional curve of the first kind. Now suppose $\Gamma \subset \mathrm{S}$ is an irreducible curve contracted by $\Phi_{\mathrm{K}+\mathrm{H}}$. As $\Gamma(\mathrm{K}+\mathrm{H})=0$ we see $\Gamma \mathrm{K}=-\Gamma \mathrm{H}<0$. On the other hand, as $\Gamma^{2}<0$ (see [15], p. 6), we must have by genus formula $-2 \leq 2 g(\Gamma)-2=\Gamma^{2}+\Gamma K \leq-2$. We thus see that Γ is an exceptional curve of the first kind. This proves α). Statement β) follows from the first part.

Let $\mathrm{S} \subset \mathbf{P}^{n}$ be a ruled surface which is neither a scroll nor ruled in conics; we call S ruled in cubics if its fibres have degree three.

Lemma 5.1. Let $\mathrm{S} \subset \mathbf{P}^{n}$ be a surface of sectional genus g ruled in cubics. Then

$$
\begin{equation*}
(\mathrm{K}+\mathrm{H})^{2}=g+q-2 . \tag{5.1}
\end{equation*}
$$

Proof. Let S_{0} be a geometrically ruled surface of irregularity q and consider a fundamental section C_{0} and a fibre f of its. If C is a smooth three-secant curve of S_{0} (i.e. $\mathrm{C} f=3$), for a suitable integer m one has $\mathrm{C} \equiv 3 \mathrm{C}_{0}+m f$. As $\mathrm{K}_{\mathrm{S}_{0}} \equiv-2 \mathrm{C}_{0}+(2 q-2-e) f$, by (1.5), a straightforward calculation gives

$$
\begin{equation*}
\left(\mathrm{K}_{\mathrm{S}_{0}}+\mathrm{C}\right)^{2}=g(\mathrm{C})+q-2 . \tag{5.2}
\end{equation*}
$$

Consider now the surface S ruled in cubics. If $S=S_{n}$ is geometrically ruled in cubics its general hyperplane section H is a smooth three-secant curve of S_{0} and (5.2) becomes (5.1). Otherwise, the singular fibres of S are reducible and each reducible fibre F of S is one of the following:
a) $\mathrm{F}=\Gamma+\mathrm{L}$, with $\Gamma \mathrm{H}=2, \mathrm{LH}=1, \Gamma^{2}=\mathrm{L}^{2}=-1$ and $\Gamma \mathrm{L}=1$;
b) $\mathrm{F}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}$, with $\mathrm{L}_{i} \mathrm{H}=1(i=1,2,3), \mathrm{L}_{1}^{2}=\mathrm{L}_{3}^{2}=-1$, $\mathrm{L}_{2}^{2}=-2$ and $\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{L}_{3} \mathrm{~L}_{2}=1, \mathrm{~L}_{1} \mathrm{~L}_{3}=0$.

This follows immediately from genus formula, the rationality of the general fibre of S and the fact that $F^{2}=0$. Now consider the morphism $\eta: S \rightarrow S_{0}$ blowing-down the exceptional lines L's on each fibre a) and L_{1} and L_{3} on each fibre b). By Castelnuovo's criterion (see [24], p. 36) S_{0} is a smooth surface; moreover it is immediate to see that S_{0} is geometrically ruled. Now notice that a general hyperplane section H of S is the proper transform via η of a smooth three-secant curve C on S_{0}. Indeed, call p_{1}, \cdots, p_{r} the points of S_{0} to which η contracts the quoted exceptional lines; the curve C, image of H, is a curve through p_{1}, \cdots, p_{r} and it is smooth, since $\mathrm{H} \eta^{-1}\left(p_{i}\right)=1$. As

$$
\eta^{*} \mathrm{C}=\mathrm{H}+\sum_{i=1}^{r} \eta^{-1}\left(p_{i}\right) \quad \text { and } \quad \eta^{*} f=\mathrm{F},
$$

for a fibre f of S_{0} outside of p_{1}, \cdots, p_{r}, there follows

$$
\mathrm{C} f=\eta^{*} \mathrm{C} \eta^{*} f=\mathrm{HF}+\sum_{i=1}^{r} \eta^{-1}\left(p_{i}\right) \mathrm{F}=\mathrm{HF}=3 .
$$

But, as it is known, $\mathrm{K}=\eta^{*} \mathrm{~K}_{\mathrm{S}_{0}}+\sum_{i=1}^{r} \eta^{-1}\left(p_{i}\right)$, and so $\eta^{*}\left(\mathrm{~K}_{\mathrm{S}_{0}}+\mathrm{C}\right)=\mathrm{K}+\mathrm{H}$. Then $(\mathrm{K}+\mathrm{H})^{2}=\left(\mathrm{K}_{\mathrm{S}_{0}}+\mathrm{C}\right)^{2}$ and since $g(\mathrm{C})=g(\mathrm{H})=g$, (5.2) gives (5.1).

Theorem 5.1. Suppose $\mathrm{S} \subset \mathbf{P}^{n}$ is a surface with sectional genus $g \geq 3$. If S is neither a scroll nor ruled in conics, then

$$
\begin{equation*}
(\mathrm{K}+\mathrm{H})^{2} \geq p_{g}+g-q-2, \tag{5.3}
\end{equation*}
$$

and equality holds if and only if S is one of the following rational surfaces:
i) a Bordiga surface i.e. the image of \mathbf{P}^{2} via the rational map associated to a linear system $\left|\mathrm{C}_{4}-p_{1}-\cdots-p_{r}\right|$ of quartics through $r(0 \leq r \leq 10)$ distinct points p_{i} in general position;
ii) the image of \mathbf{P}^{2} via the rational map associated to a linear system $\left|\mathrm{C}_{5}-p_{1}-\cdots-p_{s}\right|$ of quintics through $s(0 \leq s \leq 15)$ distinct points in general position;
iii) a rational surface ruled in cubics.

Proof. First of all $\Phi_{\mathrm{K}+\mathrm{H}}: \mathrm{S} \rightarrow \Sigma$ is a morphism and $\operatorname{dim} \Sigma=2$, in view of Remark 5.1. Moreover the (possibly singular) surface Σ is contained in $\mathbf{P}^{p_{g}+g-q-1}$ by (1.3) and then it has degree $\geq p_{g}+g-q-2$. It thus follows the inequality

$$
\begin{equation*}
(\mathrm{K}+\mathrm{H})^{2}=\operatorname{deg} \Phi_{\mathrm{K}+\mathrm{H}} \operatorname{deg} \Sigma \geq p_{g}+g-q-2 \tag{5.4}
\end{equation*}
$$

so (5.3) is established.

Now suppose equality holds in (5.3). Then $\operatorname{deg} \Phi_{\mathrm{K}+\mathrm{H}}=1$ and $\operatorname{deg} \Sigma=p_{g}+g-q-2$, by (5.4). So $\Phi_{\mathrm{K}+\mathrm{H}}$ is a birational morphism and Σ falls in one of the following cases (see [21], p. 607):

1) $\boldsymbol{\Sigma}=\mathbf{P}^{2}$,
2) $\boldsymbol{\Sigma}$ is the Veronese surface,
3) Σ is a rational scroll,
4) Σ is a cone over a rational normal curve.

First of all note that case 4) does not occur in view of Remark 5.2, α. In any case the surface S is rational and then $\operatorname{deg} \Sigma=g-2$ and $\Sigma \subset \mathbf{P}^{g-1}$. In case 1), it is $g=3$ and Remark 5.2, β shows that $\Phi_{\mathrm{K}+\mathrm{H}}$ factorizes via r simultaneous blowings-up. As $\mathrm{H}(\mathrm{K}+\mathrm{H})=4, \mathrm{~S}$ is as in i. Really as the linear system $\left|\mathrm{C}_{4}-p_{1}-\cdots-p_{r}\right|$ embeds S in \mathbf{P}^{14-r}, it must be, of course, $r \leq 10$. In case 2) arguments similar to the previous ones show that $g=6, \mathrm{H}(\mathrm{K}+\mathrm{H})=10$ and that S is as in $i i)$. In case 3) call f a fibre of the scroll Σ and consider the proper transform $\mathrm{C}=\Phi_{\mathrm{K}+\mathrm{H}}^{-1}(f)$. So $\mathrm{C}^{2}=0$. Moreover $g(\mathrm{C})=0$ as $\Phi_{\mathrm{K}+\mathrm{H}}$ is birational and then $\mathrm{CK}=-2$. Since $1=\operatorname{deg} f=\mathrm{C}(\mathrm{K}+\mathrm{H})$, it thus follows $\mathrm{CH}=3$ and S is ruled in cubics. Conversely, in cases i) and $i i$) a straightforward computation shows equality in (5.3). In case iii) equality follows from Lemma 5.1.

6. On projective surfaces of low sectional genus

The classification of surfaces with a given sectional genus g is a quite classical subject in Algebraic Geometry. This was treaten for low values of g by many geometers; the most important contributions we know are due to Noether, Picard [17], Castelnuovo [3], [4], [5], Enriques [8], Scorza [22], and Roth [18], [19], [20]. Some results proven in previous sections apply specifically to the study iof surfaces of low sectional genus. For giving an example here we restate some of the known results for $g \leq 4$ supplying a unitary proof of them; by the way we point out some facts in cases $g=3$ and $g=4$.

As we shall see in a moment the most of surfaces with low g are ruled. Hence it is convenient for the sequel to point out the first inequality of sec. 3 for ruled surfaces.

From now on $\mathrm{S} \subset \mathbf{P}^{n}$ will be a surface of degree d, H its general hyperplane section and $g=g(\mathrm{H})$.

Proposition 6.1. Suppose S is a linearly normal ruled surface. If S is neither a scroll nor the Del Pezzo surface of degree $d=9$, one has

$$
\begin{equation*}
d \leq 4 g+4-8 q \tag{6.1}
\end{equation*}
$$

(5) Compare (6.1) with the inequalities proven by Hartshorne (see [12], pp. 115120) for the self-interesection of a curve of positive genus on a ruled surface.

Moreover equality holds if and only if S is either
i) geometrically ruled in conics,
ii) the Veronese surface, or
iii) the Bordiga surface of degree $d=16$ (i.e. S is P^{2} embedded by the complete linear system of all quartics).

Proof. Suppose $\mathbf{S} \simeq \mathbf{P}^{2}$. Then S is $\mathbf{P}^{\mathbf{2}}$ embedded by the complete linear system of curves of degree m and $g=\frac{1}{2}(m-1)(m-2), d=m^{2}$. So (6.1) is fulfilled unless $m=3$ and equality holds if and only if either $m=2$ or $m=4$, i.e. in cases $i i$) and $i i i$). Now suppose $S \neq \mathbf{P}^{2}$; then Remark 1.5 implies $\mathrm{K}^{2} \leq 8(1-q)$ and so (3.5) supplies (6.1). Equality holds if and only if equality holds in (3.5) and simultaneously S is geometrically ruled, i.e. in case i) by Corollary 3.1.

By Proposition 6.1, recalling Proposition 3.1, Remarks 1.1, 3.2 and Theorem 4.1 we get immediately the classical results when $g \leq 2$.

Theorem 6.1 (Picard-Castelnuovo-Del Pezzo). If S is a linearly normal surface of sectional genus $g \leq 2$, then
i) S is either \mathbf{P}^{2}, the Veronese surface or a rational scroll, if $g=0$;
ii) S is either a Del Pezzo surface or an elliptic scroll, if $g=1$;
iii) S is either a rational surface of degree $d(5 \leq d \leq 12)$ ruled in conics (with $\delta=12$-d singular fibres) or a scroll, if $g=2$.

To analyze case $g=3$ we need the following lemma the proof of which makes also use of rather classical arguments (e.g. see [6], pp. 149-150).

Lemma 6.1. Let $\mathrm{S} \subset \mathbf{P}^{d-2}$ be a surface of degree d with $g=3$. Then S is rational.

Proof. As $d \geq 6$ by Castelnuovo's inequality (see [11], p. 351), one has $d>2 g-2$ and then S is ruled in view of Remark 1.4. By projecting S from $d-5$ points of itself in a \mathbf{P}^{3} we obtain a singular surface $S^{\prime} \subset \mathbf{P}^{3}$ of degree five. Consider the minimal desingularization $\eta: \Sigma \rightarrow S^{\prime}$ of S^{\prime} and the divisors H^{\prime} and Δ^{\prime} which are the inverse images via η of a hyperplane section of S^{\prime} and of its double curve Δ respectively. Then (e.g. see [9], p. 627).

$$
\begin{equation*}
\mathrm{K}_{\Sigma} \equiv \mathrm{H}^{\prime}-\Delta^{\prime} . \tag{6.2}
\end{equation*}
$$

Now, since Σ is birational to the ruled surface S , we have $p_{g}(\Sigma)=0$, and so (1.3) reads

$$
\begin{equation*}
h^{0}\left(\mathrm{~K}_{\Sigma}+\mathrm{H}^{\prime}\right)=3-q \tag{6.3}
\end{equation*}
$$

Afterwards consider in \mathbf{P}^{3} a general line l skew with Δ and two points q_{1}, q_{2} on l. A plane Π through l cuts out on S^{\prime} a quintic with three double points
p_{1}, p_{2}, p_{3}. Obviously these points are not collinear and none of them lies on l; hence there exists a unique irreducible conic on Π through the five points $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}$. When Π varies in the pencil with base l this conic generates a quadric surface Q containing Δ. Denote by Q^{\prime} the divisor on Σ inverse image via η of $Q \cap S^{\prime}$. One has $Q^{\prime} \in\left|2 H^{\prime}-\Delta^{\prime}\right|$, hence $Q^{\prime} \in\left|K_{\Sigma}+H^{\prime}\right|$ in view of (6.2). Now when q_{1} and q_{2} vary on l, the quadric Q (and the Q^{\prime}) varies in a net. So (6.3) involves $q=0$; thus S is rational.

Theorem 6.2 (see also Castelnuovo [5]). Let S be a surface of sectional genus $g=3$. Then S is either
i) a rational surface of degree d with $6 \leq d \leq 16$,
ii) a linearly normal surface of degree $d=8$ in \mathbf{P}^{5} geometrically ruled in conics over an elliptic curve and with invariant $e=-1$,
iii) a scroll (with $q=3$), or
iv) a quartic surface in \mathbf{P}^{3}.

Proof. If $\mathrm{S} \subset \mathbf{P}^{3}$ it must be $d=4$ and we are in case iv). Otherwise $d \geq 6$ by Castelnuovo's inequality (see [11], p. 351). In this case S is ruled by Remark 1.4 and it has irregularity $q \leq 3$ in view of Remark 1.1. If $q=3$ we are in case iii) by Proposition 3.1. Suppose $q \leq 2$; as $d \geq 6$, (6.1) implies $q \leq 1$. If $q=0$ then S is rational and (6.1) again supplies $d \leq 16$; so we are in case i). It remains only to show that if $q=1$ we are in case ii). First of all, it must be $d \leq 8$, by (6.1). Moreover the exact sequence (1.4) gives $h^{0}(\mathrm{H})=d-2+h^{1}(\mathrm{H})$ and $h^{1}(\mathrm{H})=\varepsilon \leq 1$, by Remark 1.4. So $\mathrm{S}^{\prime}=\Phi_{\mathrm{H}}(\mathrm{S})$ is a surface of degree d in $\mathbf{P}^{d-3+\varepsilon}$ with sectional genus three. Thus, being $q=q\left(\mathrm{~S}^{\prime}\right)=1$, Lemma 6.1 implies $\varepsilon=0$ i.e. $S^{\prime} \subset \mathbf{P}^{d-3}$. First of all it is $d \neq 6, S^{\prime}$ being irregular. By absurd suppose $d=7$; then formula (4.1) shows $K^{2}=-3$ whilst $K^{2} \geq-1$, by (3.5). There thus follows $d=8$ and then $S^{\prime} \subset \mathbf{P}^{5}$. On the other hand S, cannot be a projection of S^{\prime}, otherwise S should be singular, since S^{\prime} is not the Veronese surface ${ }^{(6)}$ (see [23]). So $S=S^{\prime}$ is a linearly normal elliptic ruled surface of degree $d=8$ in \mathbf{P}^{5}. Moreover, equality holding in (6.1), Proposition 6.1 says that S is geometrically ruled in conics. Finally to determine the invariant e of S consider a fibre F_{1} and let Π be a hyperplane containing the plane $\left\langle\mathrm{F}_{1}\right\rangle$. The corresponding hyperplane section of S is $\mathrm{H}_{1}=\mathrm{F}_{1}+\Gamma$, where $\Gamma \equiv 2 \mathrm{C}_{0}+(m-1) \mathrm{F}$, in view of (1.7). As C_{0} is an elliptic curve, we must have $\operatorname{deg} \mathrm{C}_{0}=\mathrm{C}_{0} \mathrm{H} \geq 3$; so we get

$$
6=\left(\mathrm{H}_{1}-\mathrm{F}_{1}\right) \mathrm{H}=\Gamma \mathrm{H}=\left(2 \mathrm{C}_{0}+(m-1) \mathrm{F}\right) \mathrm{H} \geq 6+2(m-1)
$$

and then $m \leq 1$. Now $8=\mathrm{H}^{2}=4 \mathrm{C}_{0}^{2}+4 m$; hence $e=-\mathrm{C}_{0}^{2}=-2+m$. As $e \geq-1$ (see [11], p. 377), one gets $m \geq 1$ and so $m=1$ and $e=-1$.
(6) Suppose S is a projection of S^{\prime}. Then the center of the projection must be outside S^{\prime}, the two surfaces having the same degree.

By the way it is worth mentioning that the projective configuration occurring in case ii) for the elliptic system of conics on S had been deeply described by Scorza in [22]. Moreover, as far as an explicit description (including the plane models) of the rational surfaces occurring in case i) is concerned, see [7], pp. 489-490.

Now we are able to point out a fact in [14].
Corollary 6.1. Let $\mathrm{S} \subset \mathbf{P}^{4}$ be a surface of degree $d=6$. Then S is either 1) a Bordiga surface (i.e. the image of \mathbf{P}^{2} via the rational map associated to a linear system of quartics through ten points in general position), or 2) a complete intersection of a quadric and a cubic form.

Proof. If we are not in case 2), S is a ruled surface and $g=3$ (see [14], sec. 6). Lemma 6.1 shows that S is rational and formula (4.1) implies $\mathrm{K}^{2}=-1$. Then S is not ruled in conics, by Corollary 3.1, II. Moreover $\mathrm{HK}=2 g-2-d$ and so $(\mathrm{K}+\mathrm{H})^{2}=1$. As $h^{0}(\mathrm{~K}+\mathrm{H})=g=3$, it turns out that $\Phi_{\mathrm{K}+\mathrm{H}}: \mathrm{S} \rightarrow \mathbf{P}^{2}$ is a birational morphism and it factorizes by means of ten simultaneous blowings-up, in view of Remark 5.1, β. As $\mathrm{H}(\mathrm{K}+\mathrm{H})=4, \Phi_{\mathrm{K}+\mathrm{H}}$ relates $|\mathrm{H}|$ to a linear system of plane quartics with ten simple base point.

Theorem 6.3. Let S be a surface of degree d with sectional genus $g=4$. Then S is either
i) a rational surface with $7 \leq d \leq 20$,
ii) an elliptic ruled surface with $8 \leq d \leq 12$,
iii) a scroll (with $q=4$), or
iv) the complete intersection of a quadric and a cubic form of \mathbf{P}^{4}.

Proof. First of all $d \geq 6$ by Castelnuovo's inequality. Suppose $d=6$; as $d=6=2 g-2$, on a general hyperplane section H, the characteristic linear series $||H| \cdot \mathrm{H}|$ has dimension $h^{0}\left(\left.\mathrm{H}\right|_{\mathrm{H}}\right) \leq 4$, equality holding if and only if $\left.H\right|_{H} \equiv \mathrm{~K}_{\mathrm{H}}$ (e.g. see [10], p. 111). Were it $h^{0}\left(\left.\mathrm{H}\right|_{\mathrm{H}}\right)<4$ it would be $\mathrm{S} \subset \mathbf{P}^{3}$, as we can see by (1.4) and so H would be a (smooth) plane curve of genus 4: absurd. Henceforth H is a canonical curve of genus $g=4$ and so it is the complete intersection of a quadric and a cubic form of $\mathbf{P}^{\mathbf{3}}$; then we are in case iv) (e.g. see [11], p. 276). Now suppose $d \geq 7$. By Remarks 1.4 and $1.1, \mathrm{~S}$ is ruled and $q \leq 4$. If $q=4$, we are in case iii) by Propositions 3.1 ; otherwise formula (6.1) shows $q \leq 1$ as $d \geq 7$. If $q=0, \mathrm{~S}$ is rational and (6.1) once again gives $d \leq 20$ and so we are in case i). Suppose now $q=1$; hence S is an elliptic ruled surface and (6.1) supplies $d \leq 12$. It remains to show that $d \geq 8$. By absurd, suppose $d=7$; since S cannot be contained in \mathbf{P}^{3}, the exact sequence (1.4) gives $h^{0}(H)=5$, namely $\mathrm{S} \subset \mathbf{P}^{4}$. Thus formula (4.1) supplies $\mathrm{K}^{2}=-8$. On the other hand it must be $\mathrm{K}^{2} \geq-5$ by (3.5).

Of course, by Proposition 6.1, the surfaces of degree $d=20$ in i) are geometrically ruled in conics. Note also that in view of Theorem 5.1 the surfaces of degree $d=19$ in i) are forced to be ruled in conics.

References

[1] A. Beauville (1978) - Surfaces algébriques complexes. «Astérisque», 54.
[2] E. Bombieri (1973) - Canonical models of surfaces of general type. «Publ. Math. I.H.E.S. », 42, 171-219.
[3] G. Castelnuovo (1894) - Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. «Rend. Accad. Naz. Lincei», (5) 3, 229-232.
[4] G. Castelnuovo (1890) - Sulle superficie algebriche le cui sezioni piane sono curve iperellittiche. "Rend. Circ. Matem. Palermo », 4, 73-88.
[5] G. Castelnuovo (1890) - Sulle superficie algebriche le cui sezioni sono curve di genere tre. "Atti R. Accad. Sci. Torino ", 25.
[6] G. Castelnuovo (1894) - Sulla razionalità delle involuzioni piane. "Math. Ann.», 44, 125-155.
[7] F. Conforto (1939) - Le superficie razionali. Zanichelli, Bologna.
[8] F. Enriques (1895) - Sui sistemi lineari di ipersuperficie algebriche ad intersezioni variabili iperellittiche. "Math. Ann. 》, 46, 179-199.
[9] P. Griffiths and. J. Harris (1978) - Principles of Algebraic Geometry. J. Wiley \& Sons. Inc., New York.
[10] R. C. Gunning (1966) - Lectures on Riemann surfaces. Princeton Univ. Press. Princeton, N. J.
[11] R. Hartshorne (1977) - Algebraic Geometry. Springer Verlag, New York-Heidel-berg-Berlin.
[12] R. Hartshorne (1969) - Curves with high self-intersection on algebraic surfaces. «Publ. Math. I.H.E.S.》, 36, 111-125.
[13] A. Lanteri (1980) - On the existence of scrolls in \mathbf{P}^{4}. «Rend. Accad. Naz. Lincei ", (8) 69, 223-227.
[14] A. Lanteri and M. Palleschi (1979) - Sulle superfici di grado piccolo in \mathbf{P}^{4}. «Istituto Lombardo (Rend. Sci.) ", A 113, 224-241.
[15] D. Mumpord (1961) - The topology of normal singularities of an algebraic surface and a criterion for simplicity. «Publ. Math. I.H.E.S.», 9, 5-22.
[16] M. Nagata (1970) - On self-intersection number of a section on a ruled surface. "Nagoya Math. J.», 37, 191-196.
[17] E. Picard and G. Simart (1906) - Théorie des fonctions algébriques de deux variables indépendents, vol. II. Gauthier-Villars, Paris.
[18] L. Roth (1933) - On surfaces of sectional genus four. «Proc. Cambridge Phil. Soc.", 29, 184-194.
[19] L. Roth (1934) - On surfaces of sectional genus five. "Proc. Cambridge Phil. Soc. ", 30, 123-133.
[20] L. Roth (1936) - On surfaces of sectional genus six. "Proc. Cambridge Phil. Soc.", 32, 355-365.
[21] B. Saint Donat (1974) - Projective models of K-3 surfaces. "Amer. J. of Math.», 96, 602-639.
[22] G. Scorza (1910) - Le superficie a curve sezioni di genere 3. «Ann. di Mat.» (3) 17, 281-330
[23] F. Severi (1901) - Intorno ai punti doppi impropri di una superficie dello spazio a quattro dimensioni e a^{\prime} suoi punti tripli apparenti. «Rend. Circ. Matem. Palermo », 15, 33-51.
[24] I. R. Shafarevich et al. (1965) - Algebraic Surfaces. "Proc. Steklov Inst. of Math. ", 75, (transl. by Amer. Math. Soc., 1967).
[25] A. J. Sommese (1979) - Hyperplane sections of projective surfaces I : the adjunction mapping. "Duke Math. J.", 46, 377-401.
[26] H. P. F. Swinnerton Dyer (1973) - An enumeration of all varieties of degree 4. "Amer. J. of Math. 》, 95, 403-418.
[27] A. Van de Ven (1979) - On the 2-connectedness of very ample divisors on a surface. «Duke Math. J.", 46, 403-407.
[28] X. X. X. (1957) - Correspondence. "Amer. J. of Math.》, 79, 951-952.

