Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Piermarco Cannarsa, Giuseppe Da Prato, Jean-Paul Zolésio

Evolution equations in non-cylindrical domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 83 (1989), n.1, p. 73-77.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1989_8_83_1_73_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi matematica. - Evolution equations in non-cylindrical domains. Nota di Piermarco Cannarsa, Giuseppe Da Prato e Jean-Paul Zolésio, presentata (*) dal Corrisp. A. Ambrosetti.

Abstract. - We develolp a new method to solve an evolution equation in a non-cylindrical domain, by reduction to an abstract evolution equation..

Key words: Evolution equations; Maing domains; Damped wave equation.
Riassunto. - Equazioni di evoluzione in domini non cilindrici. Si dà un nuovo metodo per risolvere un'equazione di evoluzione in un dominio non cilindrico, riconducendola a un'equazione astratta.

1. Heat equation in non-cylindrical domains

We are here concerned with the following problem:

$$
\begin{cases}y_{t}(t, x)=\Delta y(t, x)+v(t, x) & \text { in } Q_{T} \tag{1.1}\\ y(0, x)=y_{0}(x) & \text { in } \Omega_{0} \\ y(t, x)=0 & \text { in } \Sigma_{T}\end{cases}
$$

where Δ denotes the Laplace operator on a smooth domain Ω_{t} in R^{N} and Q_{T} is the noncylindrical evolution domain in R^{N+1}

$$
\begin{equation*}
Q_{T}=\bigcup_{0<t<T}\{t\} \times \Omega_{t} . \tag{1.2}
\end{equation*}
$$

Moreover the lateral boundary Σ_{T} is defined as:

$$
\begin{equation*}
\Sigma_{T}=\bigcup_{0 \lll T}\{t\} \times \Gamma_{t} \tag{1.3}
\end{equation*}
$$

where Γ_{t} is the boundary of Ω_{t}.
Our approach consists of reducing problem (1.1) to an abstract evolution equation:

$$
\begin{equation*}
y^{\prime}(t, \cdot)=A(t) y(t, \cdot)+v(t, \cdot), \quad y(0, \cdot)=y_{0} \tag{1.4}
\end{equation*}
$$

in the space $X=L^{2}\left(\boldsymbol{R}^{N}\right)$, with norm:

$$
\|y\|=\left[\int_{R^{N}}|y(x)|^{2} d x\right]^{1 / 2}
$$

The linear operators $A(t)$ are defined as follows:

$$
\begin{equation*}
D(A(t))=\left\{y \in X ; y_{\mid \Omega_{t}} \in H^{2}\left(\Omega_{t}\right) \cap H_{0}^{1}\left(\Omega_{t}\right), y_{\mid \Omega_{t}^{c}} \in H^{2}\left(\Omega_{t}^{c}\right) \cap H_{0}^{1}\left(\Omega_{t}^{c}\right)\right\} \tag{1.5}
\end{equation*}
$$

where Ω_{t}^{c} is the complementary set in R^{N} of Ω_{t}. Moreover

$$
\begin{equation*}
\int_{R^{N}} A(t) z \phi d x=\int_{R^{N}} z \Delta \phi d x, \quad \text { for all } \phi \in \mathscr{O}\left(\boldsymbol{R}^{N}\right) \text { such that } \phi=0 \text { on } \Gamma_{t} \text {. } \tag{1.6}
\end{equation*}
$$

(*) Nella seduta del 26 novembre 1988.

Lemma 1. For all $t \geq 0, A(t)$ is the infinitesimal generator of an analytic semigroup in X.

Proof. We have to show that the problem:

$$
\begin{equation*}
\lambda u(t, \cdot)-A(t) u(t, \cdot)=f(\cdot), \quad f \in X \tag{1.7}
\end{equation*}
$$

has a unique solution $u(t, \cdot) \in D(A(t))$ for all λ in the sector $S=\{\lambda \in \mathbb{C} ;|\arg \lambda|<\pi\}$ and that the resolvent estimate holds, i.e.

$$
\begin{equation*}
\left\|(\lambda-A(t))^{-1}\right\| \leq M /|\lambda| . \tag{1.8}
\end{equation*}
$$

In fact, problem (1.7) is equivalent to:

$$
\left\{\begin{array}{llll}
(a) \lambda u_{1}(t, x)-\Delta u_{1}(t, x)=f(x), & u_{1}(t, x) \in H^{2}\left(\Omega_{t}\right), & u_{1}(t, \cdot)=0 & \text { on } \Gamma_{t}, \tag{1.9}\\
(b) \lambda u_{2}(t, x)-\Delta u_{2}(t, x)=f(x), & u_{2}(t, x) \in H^{2}\left(\Omega_{t}^{c}\right), & u_{2}(t, \cdot)=0 & \text { on } \Gamma_{t} .
\end{array}\right.
$$

Now, we apply the results of Agmon [3] to each of the problems in (1.9) and obtain the conclusion.

Next, we not that the domains $D(A(t))$ are not constant. So, we are naturally led to use the Kato-Tanabe approach [4] in the improved form of Acquistapace-Terreni [1]. For this purpose we have to obtain the following estimate:

$$
\begin{equation*}
\left\|\frac{d}{d t}\left(\lambda-A(t)^{-1}\right)\right\| \leq \frac{M}{|\lambda-\omega|^{\beta}} \tag{1.10}
\end{equation*}
$$

for some $\omega \in R, \beta>0$ and all λ satisfying $\operatorname{Re} \lambda>\omega$. Therefore, we will majorize the norms of u_{1}, u_{2} and of their derivatives with respect to the parameter t.

Following [5], we assume throughout that Ω_{t} can be constructed by using a smooth transformation T_{t} of \boldsymbol{R}^{N} into itself as follows. We assume given a continuously differentiable function $V(t, x)$ defined on $[0, T] \times R^{N}$ such that $\nabla V(t, \cdot)$ is Lipschitz and consider the associated flow which we call T_{t}. Therefore we have:

$$
\begin{equation*}
V(t, x)=\left(\frac{\partial}{\partial t} T_{t}\right) \circ T_{t}^{-1}(x) . \tag{1.11}
\end{equation*}
$$

Now, we assume:

$$
\begin{equation*}
\Omega_{t}=T_{t}\left(\Omega_{0}\right) \tag{1.12}
\end{equation*}
$$

Let us introduce some additional notation. We set:

$$
\begin{gather*}
J_{t}=\operatorname{det}\left(D T_{t}\right) \tag{1.13}\\
\Lambda(t)=J_{\stackrel{*}{*}}^{*}\left(D T_{t}\right)^{-1}\left(D T_{t}\right)^{-1} \tag{1.14}
\end{gather*}
$$

where $*\left(D T_{t}\right)^{-1}$ denote the transposed matrix of $\left(D T_{t}\right)^{-1}$.
Now, consider the resolvent equation (1.7) and split it in the form (1.9). In the sequel, we denote by O_{t} either one of the set Ω_{t} and Ω_{t}^{c}. One can show that there exists the derivative $u_{t}(t, x)$ (with respect to t) and

$$
\begin{equation*}
u_{t}(t, x)=\dot{u}(t, x)-\nabla u(t, x) \cdot V(t, x) \tag{1.15}
\end{equation*}
$$

where • denotes the scalar product in R^{N} and \dot{u} is the solution of the problem

$$
\begin{equation*}
\lambda \dot{u}-\Delta \dot{u}=\operatorname{div}(f V(t))-u \operatorname{div}(V(t))+\operatorname{div}\left(\Lambda^{\prime}(t) \nabla u\right), \quad \text { in } \quad O_{t} . \tag{1.16}
\end{equation*}
$$

We can now prove (1.10).
Proposition 2. There exist $\omega>0$ such that

$$
\begin{equation*}
\left\|\frac{d}{d t}\left(\lambda-A(t)^{-1}\right)\right\| \leq \frac{M}{\sqrt{|\lambda-\omega|}}, \quad \text { for all } \operatorname{Re} \lambda>\omega \text { and a suitable constant } M . \tag{1.17}
\end{equation*}
$$

Proof. First recall that by the results of S. Agmon [3[, the following estimates hold for the solutions u_{1}, u_{2} of problems (1.9)-a)-b).

$$
\begin{align*}
& |\lambda|\left\|u_{1}(t, \cdot)\right\|_{L^{2}\left(\Omega_{i}\right)}+\sqrt{|\lambda|}\left\|\nabla u_{1}(t, \cdot)\right\|_{L^{2}\left(\Omega_{i}\right)} \leq C\|f\|_{L^{2}\left(\Omega_{i}\right)} \tag{1.18}\\
& |\lambda|\left\|u_{2}(t, \cdot)\right\|_{L^{2}\left(\Omega_{i}\right)}+\sqrt{|\lambda|}\left\|\nabla u_{2}(t, \cdot)\right\|_{L^{2}\left(\Omega_{i}^{(}\right)} \leq C\|f\|_{L^{2}\left(\Omega_{i}\right)} \tag{1.19}
\end{align*}
$$

where C is a suitable constant $\operatorname{Re} \lambda>0$.
By (1.16) we have:

$$
\begin{align*}
& \text { 20) } \quad \lambda \int_{O_{t}} \dot{u}(t, x) \overline{\phi(x)} d x+\int_{O_{t}} \nabla \dot{u}(t, x) \cdot \nabla \overline{\phi(x)} d x= \tag{1.20}\\
& =-\int_{O_{t}} f(x) V(t, x) \cdot \nabla \overline{\phi(x)} d x-\int_{O_{t}} u(t, x) \operatorname{div} V(t, x) \overline{\phi(x)} d x-\int_{O_{t}} \Lambda^{\prime}(t) \nabla u(t, x) \cdot \nabla \overline{\phi(x)} d x
\end{align*}
$$

for all $\phi \in H_{0}^{1}\left(O_{t}\right)$, whee $O_{t}=\Omega_{t}$ or Ω_{t}^{c}.
By taking $\phi=\dot{u}$ in (1.20) with $O_{t}=\Omega_{t}$ or Ω_{t}^{c}, and adding up, we find:

$$
\begin{align*}
\lambda \int_{R^{N}}|\dot{u}(t, x)|^{2} d x+ & \int_{R^{N}}|\nabla \dot{u}(t, x)|^{2} d x=-\int_{R^{N}} f(x) V(t, x) \overline{\nabla \dot{u}(t, x)} d x- \tag{1.21}\\
& \quad-\int_{R^{N}} \Lambda^{\prime}(t) \nabla u(t, x) \cdot \overline{\nabla \dot{u}(t, x)} d x-\int_{R^{N}} u(t, x) \operatorname{div} V(t, x) \bar{u}(t, x) \\
&
\end{align*}
$$

Now, taking the real part of (1.21) and recalling (1.18) and (1.19), we have, by standard computations, that there exist $\omega>0$ such that, if $\operatorname{Re} \lambda>\omega$, then

$$
\begin{equation*}
\int_{R^{N}}|\nabla \dot{u}(t, x)|^{2} d x \leq C \int_{R^{N}}|f(x)|^{2} d x \tag{1.22}
\end{equation*}
$$

where C is a suitable constant.
Finally, going back to (1.21) and passing to absolute values, we obtain the estimate:

$$
\begin{equation*}
\| \dot{u}(t, \cdot) \leq C \frac{\|f\|}{\sqrt{\lambda-\omega \mid}} . \tag{1.23}
\end{equation*}
$$

The conclusion follows by (1.15), (1.18), (1.19) and (1.23). \#
Now, by the abstract results of [1] and [2], the theorem below follows.
Theorem 3. For any $y_{0} \in X$ and $v \in C([0, T] ; X)$ problem (1.4) has a unique strong solution y. Moreover, for all $\alpha \in] 0,1\left[\right.$, we have $y \in C^{\alpha}([0, T] ; X)$ and $y(t) \in D_{A(t)}(\alpha, 2)$ (the Lions-Peetre interpolation spaces).

Remark 4. From Theorem 3 we conclude that the function $y(t, x)=y(t)(x)$ solves problem (1.1) in the following sense:

$$
\begin{equation*}
\int_{Q_{T}} \nabla y \cdot \nabla \phi d x d t-\int_{Q_{T}} y \phi_{t} d x d t=\int_{Q_{T}} v \phi d x d t+\int_{Q_{T}} y_{0} \phi(0, \cdot) d x \tag{1.24}
\end{equation*}
$$

for all $\phi \in C^{\infty}\left(Q_{T}\right)$ such that $\phi(t, x)=0$ on $\left(\{T\} \times \Omega_{T}\right) \cup \Sigma_{T}$. In a forthcoming paper we shall treat more general elliptic operators and give a more detailed analysis on the regularity properties of y.

2. The damped wave equation in non-cylindrical domains

We consider the following problem:

$$
\begin{cases}y_{t t}(t, x)=\Delta y(t, x)+\Delta y_{t}(t, x)+v(t, x) & \text { in } Q_{T} \tag{2.1}\\ y(0, x)=y_{0}(x), \quad y_{t}(0, x)=y_{1}(x) & \text { in } \Omega_{0} \\ y(t, x)=0, & \text { in } \Sigma_{T}\end{cases}
$$

where we keep the notation of the previouos section.
By writing:

$$
Y(t)=\left[\begin{array}{c}
y(t, \cdot) \tag{2.2}\\
y_{t}(t, x)
\end{array}\right]
$$

problem (2.1) can be set, in the Banach space $Z=X \oplus X$, in the following abstract form:

$$
\begin{equation*}
Y^{\prime}(t)=\mathfrak{a}(t) Y(t)+V(t), \quad 0 \leq t \leq T ; Y(0)=Y_{0} \tag{2.3}
\end{equation*}
$$

where:

$$
\mathfrak{O}(t)=\left[\begin{array}{cc}
0 & 1 \tag{2.4}\\
A(t) & A(t)
\end{array}\right] ; \quad V(t)=\left[\begin{array}{c}
0 \\
v(t, \cdot)
\end{array}\right] ; \quad Y_{0}=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

As easily checked, the resolvent set $\rho(\mathfrak{Q}(t))$ of $\mathfrak{Q}(t)$ contains a sector $S_{\theta}=\{\lambda \in w C ;|\arg \lambda|<\theta\}$, with some $\left.\theta \in\right] \pi / 2, \pi[$. Moreover, we have:

$$
(\lambda-\mathfrak{a}(t))^{-1}=\left[\begin{array}{ll}
R_{11}(t, \lambda) & R_{12}(t, \lambda) \tag{2.5}\\
R_{21}(t, \lambda) & R_{22}(t, \lambda)
\end{array}\right] ; \quad \forall t \geq 0, \quad \forall \lambda \in S_{\theta}
$$

where:

$$
\begin{gather*}
R_{11}(t, \lambda)=(\lambda-A(t))\left(\lambda^{2}-\lambda A(t)-A(t)\right)^{-1}=\frac{1}{\lambda+1}+\frac{\lambda}{(\lambda+1)^{2}}\left(\frac{\lambda^{2}}{\lambda+1}-A(t)\right)^{-1} \tag{2.6}\\
R_{12}(t, \lambda)=\left(\lambda^{2}-\lambda A(t)-A(t)\right)^{-1}=\frac{1}{\lambda+1}\left(\frac{\lambda^{2}}{\lambda+1}-A(t)\right)^{-1} \\
R_{21}(t, \lambda)=A(t)\left(\lambda^{2}-\lambda A(t)-A(t)\right)^{-1}=-\frac{1}{\lambda+1}+\frac{\lambda^{2}}{(\lambda+1)^{2}}\left(\frac{\lambda^{2}}{\lambda+1}-A(t)\right)^{-1} \\
R_{22}(t, \lambda)=\lambda\left(\lambda^{2}-\lambda A(t)-A(t)\right)^{-1}=\frac{\lambda}{\lambda+1}\left(\frac{\lambda^{2}}{\lambda+1}-A(t)\right)^{-1} .
\end{gather*}
$$

Lemma 5. $\mathcal{Q}_{i}(t)$ generates an analytic semigroup in Z and the following estimates hold:

$$
\begin{equation*}
\left\|(\lambda-\mathfrak{a}(t))^{-1}\right\| \leq \frac{M_{1}}{\left|\lambda-\omega_{1}\right|} ; \quad\left\|\frac{d}{d t}(\lambda-\mathfrak{G}(t))^{-1}\right\| \leq \frac{M_{1}}{\sqrt{\left|\lambda-\omega_{1}\right|}} ; \quad \operatorname{Re} \lambda>\omega_{1} \tag{2.10}
\end{equation*}
$$

where M_{1} and ω_{1} are suitable constants.
Proof. By using (1.8) and (1.17) to estimate the norms of $R_{i j}$ and their derivatives with respect to t we obtain:

$$
\begin{equation*}
\left\|R_{i j}(t, \lambda)\right\| \leq \frac{C}{|\lambda|} ; \quad\left\|\frac{\partial}{\partial t} R_{i j}(t, \lambda)\right\| \leq \frac{C}{\sqrt{\left|\lambda-\omega_{1}\right|}} ; \quad i, j=1,2, \operatorname{Re} \lambda>\omega_{1} \tag{2.11}
\end{equation*}
$$

for some positive constant C and ω_{1}. Now the conclusion (2.10) follows from (2.5) and (2.11).

The following existence and uniqueness result can be deduced by Lemma 5 and the abstract theory of [1], [2].

Theorem 6. Let $y_{0}, y_{1} \in X, v \in C([0, T] ; X)$. Then problem (2.3) has a unique srong solution Y. Moreover, for all $\alpha \in] 0,1\left[, \vartheta_{\varepsilon} \eta \alpha \omega \varepsilon Y \in C^{\alpha}([0, T] ; Z)\right.$ and $Y(t) \in D_{\mathfrak{a}(t)}(\alpha, 2)$.

Remark 7. Theorem 6 implies that for any $y_{0}, y_{1} \in X, v \in C([0, T] ; X)$, problem (2.1) has a unique solution in the distribution sense. In a forthcoming paper we shall analyze this example and derive further regularity of the solution. \#

Remark 8. Notice that problem (2.1) seems hard approach by change of variable techniques. In fact, such a technique uses a transformation that, by adding a third order term in the x-derivatives, destroys the parabolic nature of the equation. \#

References

[1] Acquistapace P. and Terreni B., 1984. Some existence and regularity results for abstract nonautonomous parabolic equations. J. Math. Anal. Appl., 99: 9-61.
[2] Acquistapace P. and Terreni B., 1986. Existence and sbarp regularity results for linear parabolic nonautonomous integro-differential equations. Israel J. Math., 53 257-302.
[3] Agmon S., 1962. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure. Appl. Math., 15: 119-147.
[4] Kato T. and Tanabe H., 1962. On the abstract evolution equations. Osaka Math. J., 14: 107-133.
[5] Zolésio J. P., The material derivative. In: Céa J. and Haug E. J., Editors, 1981. Optimization of distributed parameter structures, Vol. II. Sijthoff and Nordhoff, Alpen aan den Rijn, 5: 1089-1151.

