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Meccanica dei fluidi. — On uniqueness for bounded channel flows of viscoelastic 

fluids. N o t a d i M A R S H A L L J . L E I T M A N e E P I F A N I O G . V I R G A , p r e sen t a t a (*) da l Cor ­

r i s p o n d e n t e T . M A N A C O R D A 

ABSTRACT. — It was conjectured in[ l ] that there is at most one bounded channel flow for a vis­
coelastic fluid whose stress relaxation function G is positive, integrable, and strictly convex. In this paper 
we prove the uniqueness of bounded channel flows, assuming G to be non-negative, integrable, and con­
vex, but different from a very specific piecewise linear function. Furthermore, whenever these hypothe­
ses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial. 

KEY WORDS: Uniqueness; Channel flows; Viscoelasticy fluids. 

RIASSUNTO. — Sull'unicità di soluzione per l'equazione del moto in un canale di un fluido viscoelastico. 
I n [ l ] è stata avanzata la congettura che l'equazione che descrive il moto in un canale di un fluido vis­
coelastico la cui funzione di rilassamento degli sforzi G sia positiva, integrabile e strettamente convessa 
può avere al più una soluzione limitata. In questo lavoro l'unicità di soluzione è dimostrata assumendo 
che G sia non negativa, integrabile e convessa, ma diversa da una specialissima funzione lineare a tratti. 
Inoltre, quando ricorrono queste ipotesi, le eventuali soluzioni illimitate dell'equazione di moto devono 
divergere nel tempo più rapidamente di qualsiasi polinomio. 

In; [13 we considered the smooth bounded channel flows of a viscoelastic fluid. 
We sought solutions to the homogeneous equation of motion 

(1) put(x}t)-jG(s)uxx{x,t-s)ds = 0, 
o ; 

subject to the boundary conditions 

(2) u(0>t) = u(L,t) = 0 VteR, 

in the class of functions (x) 

ueC2(E)\0^ sup|« |<<»| , 

where E is the strip 

E: = {(x>t):xe[OyL]>teR}. 

We denote by u the component of the velocity field along the axis of the channel. L is 
the width of the channel, p is a positive constant representing the mass density of the 
fluid per unit volume, and G: (0, <*>)^->R is the stress relaxation function. 

In [ l ] we conjectured that whenever the function G is positive, decreasing, inte­
grable, and strictly convex, equations (1) and (2) have no solution in U except u = 0. 
Now we are able to prove more than that. 

(*) Nella seduta del 22 giugno 1988. 
(*) The smoothness condition on x*-*u(x,t) can be relaxed without difficulty; it is not central to our 

argument. 
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THEOREM. If G is (i) non-negative, (ii) integratile, and (iii) convex, then u = 0 is the 
only solution o/( l) and (2) in U unless G is linear on each interval (kTN,(k+ l)TN),k = 
= 0,1,2,... , where 

(3) T N : ~ N K ( 0 ) 
and N is a positive integer. 

As a consequence, we shall show that when G is the piecewise linear function de­
scribed in the Theorem, (1) and (2) admit standing wave solutions of the form: 

u{xy t) = — 
2i Ax+,m,jx+jmt 

where / is any suitably smooth complex-valued -r-r -periodic function. 

REMARK 1. The hypotheses (i) - (iii) imply that G is absolutely continuous on each 
closed sub-interval of (0, °°), and its derivative G is non-positive (almost everywhere). 
Of course lim G(t) = 0. Although redundant, the hypothesis that G be non-increasing 

is physically meaningful, and so it is frequently added to the list (i)-(iii). 

REMARK 2. The Theorem asserts that, under hypotheses (i)-(iii), the solution to the 
non-homogeneous equation of motion for a viscoelastic fluid is unique within the class 
of smooth bounded flows, unless G is very special. Uniqueness theorems in viscoelas-
ticity have also been proved within classes of functions vanishing asymptotically in the 
past (see e.g. [2] and[3]). 

REMARK 3. If G(t) or G{t)y or both, become unbounded as / approaches zero, then 
G certainly cannot have the special piecewise linear form and, hence, the uniqueness 
referred to in Remark 2 obtains. Joseph, Renardy and Saut [4] have considered vis­
coelastic fluid responses of this type. 

REMARK 4. As mentioned in [1] (Remark 4), if G has finite support some of the 
results presented here can also be obtained by methods of Hale [5]. 

The proof of the Theorem relies on the following Lemma. 

LEMMA. For every function g: (0, <*>)—>/? that satisfies hypotheses (i)-(iii) of the The­
orem, let g:R->C be defined by 

(4) g(X): = je-2*aig(t)dt. 
0 

Then the function 

(5) 9(A):=2^iA+i(A), XeR, 

has zeros if and only if g is piecewise linear with nodes equally spaced at intervals oft0: = 
= 27r/yg(0). In this case 9(A) has precisely two simple zeros: X = ±l/t0. 
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PROOF. First observe that the complex equation 9(A) = 0 is equivalent to the two 
real equations: 

00 

(6) Jcos(2*A/)g(/)d/ = 0, 

• 00 

(7) J sin {2nXt)g{t)àt = 2TTA, 

0 

By (i) A = 0 is not a solution of (6). Moreover, if A0 ¥= 0 is a solution of (6) and (7), so is 
—A0. Let A>0. Since (iii) ensures that g is absolutely continuous on each closed sub-
interval of (0, oo) (see Remark 1), we can integrate by parts in the left-hand side of (6), 
and get 

00 

(8) j sin(2xXt)[-g(t)]dt = 0. 
0 

To see this, we must verify the formula (see Remark 3) 
30 00 

r r sin(27rA )̂ 
(9) J cos(27rA/)£(/)d/ = J ^ [-£(/)]d/. 

0 0 

First observe that, for 0 < a < I/2A</3< 00, 

r t r sin(2^A/) , r sin(2^A/) 
J cQs{27cXt)g(t)dt=- j g{t)dt- J — — — g ( t ) d t -

sin(27rAa) sin(27rA/3) 
-ag(a) + — g(p). 2nXa 2nX 

By virtue of (i)-(iii) and Remark 1, we can let /3—* 00 in the latter formula, noting that 
the last term vanishes in the limit. The integral on the left-hand side exists as a—» 0. 
Hence, 

lim 

1/2A 

r sin(27rA/) sin(27rAa) 

exists too. Now the limit of the integral is either non-negative or infinite, since the in­
tegrand is non-negative. If it is infinite, so is lim ag(a), which violates (ii). Thus both 

a—»0 

terms remain finite as a.—> 0. In fact lim <xg(<x) = 0, or else (ii) is again violated. Formu­
la (9) is thus verified(2). 

Since g satisfies (ii) and (iii), the function ./*-» — g(l) is non-negative and non-in­
creasing (almost everywhere). Thus A > 0 solves (8) only if g is constant (almost every-

(2) Formula (9) remains valid if g is merely assumed to be non-negative, non-increasing, and integra-
ble. In this case —g{t)dt must be replaced by òp{i), where [A denotes the (non-negative) Borei measure in­
duced by the function —g. The proof is the same. 
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where) on each interval 

A' A ) ' k U , I , ^ . . . 

Since g is absolutely continuous; it must have the form 

A ,r(rk+i-rk)s + rk> o s * S i , £ = 0,1,2,..., 

where {yk}k = o ls some non-negative, non-increasing, summabie sequence. Substitut­
ing this g into (7) yields (IxX)2 = g(0). Thus the zeros of (5) are 

ITZ 

Finally, these roots are simple if and only if 

A straightforward but tedious calculation shows that this limit is equal to (mi. 

PROOF OF THE THEOREM. We extend u oddly in x to the interval [—L, L] and com­
pute its Fourier series in x: 

u{xyt) = S vn(t) sinf - ^ j , 

where 
L 

vn[t)\ =. — J >(*,*) sin ( ^Y~ \<bc, n=ly2,.... 

If ueU solves (1) and (2), then each function v„.is bounded, of class C1 (/?), and solves 
the equation 

00 

(10) ^ ( / ) + |& . ( j ) t ;w ( / - j )dj = 0,. 
o 

where 

For a given ny we now seek solutions of (10) within the class of tempered distribu­
tions on R (3). If h\ R—> C is any integrable function we denote by h\ U—» C its Fourier 
transform 

+ 00 

If we extend G to (—°°,0) by setting G{t) = 0 for every / < 0 , then gn is defined as in 

(3) Bounded solutions of (10), if any, must be in C00 (R). Indeed, if v„ is an everywhere differentiable 
function which solves (10) pointwise, a theorem of Leitman and Mizel (see [6], Sect. 4) shows that v„ is 
locally absolutely continuous. An induction argument completes the proof. 
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(4). Let vn denote the Fourier transform of v„ regarded as a tempered distribution. 
Then (10) is equivalent to 

(11) ?J„ = o, 

where <p„ is a function defined as in (5). The solutions of (11), if any, must have sup­
port on the set {A eR: <p„(X) = 0}. Since gn satisfies hypotheses (i)-(iii), the Lemma ap­
plies, and so vn = 0 is the only solution of (11), and vn = 0 the only solution of (10), 
unless gn is piecewise linear with nodes equally spaced at intervals of 

T =2L 
n n ^ G(0) 

If this is the case, then the solutions of (10) within the class of tempered distributions 
are spanned by the bounded periodic functions (4) 

(12) t^e±l7zitlT». 

If G is linear on each interval (kTN, (k+ l)TJv), k = 0,1,2,..., for some positive in­
teger N, then every gm^,m = 1,2,..., is also linear on each interval 

klEAk+1)lîL 
m m 

and so can be regarded as a piecewise linear function with nodes equally spaced at in­
tervals of TmN. Thus vmN)m = 1,2,..., are the only non-zero Fourier coefficients of u; 
they are periodic functions of the form (12) with Tn replaced by TmN. 

If G is not the piecewise linear function above, and satisfies (i)-(iii), then u = 0 is 
the only solution of (1) and (2) in U, since every vn vanishes. 

REMARK 5. The argument employed to prove the Theorem also shows that when­
ever G satisfies (i)-(iii) any unbounded solution to (1) and (2) must grow faster than 
any polynomial as |/|—»°o. . 

There are some consequences of the Theorem worth mentioning. Suppose that G 
satisfies (i)-(iii) and is strictly convex in a neighbourhood of some point. Then it 
cannot be piecewise linear, and the Theorem guarantees that the solutions of (1) 
and (2), if any, must be unbounded. 

Now fix a positive integer N and write G^ for that piecewise linear interpolation of 
G with nodes equally spaced at intervals of TN (the same as in (3)). Then the 
functions 

u${x,t) = e + - ^ s m ( ^ , 

solve (1) and (2) with G replaced by GN. On the other hand, this G^ can also be re­
garded as a piecewise linear function with nodes equally spaced at TN/m, for any posi-

(4) See footnote 3 above. 
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tive integer m. Since T^/m — TmN) it follows that the functions 

«È,(x,/) = tf*?-^«an(^)- = 

li 
c w l i t ì fc ( I ± ^M / ) )_« i p Ji t ì fe_ I ± ^ 

# Z = —oo 

4+^f,)-/(-,+A /«N 

also solve (1) and (2) with G replaced by GN. Furthermore, if/:i?—> C is any function 
with a sufficiently smooth Fourier series of the form: 

then 

uf(xyt)= — 

is again a bounded solution of (1) and (2) when G is replaced by Gjy. 
Recall that N was any fixed positive integer. By choosing N large enough, and 

hence TN small enough, we can approximate G by G^ uniformly to any desired degree 
of accuracy. This means that if equations (1) and (2) do not admit globally bounded 
solutions for a given G, there are uniformly close approximations to G for which they 
do. We had already encountered in[l] a G for which this phenomenon oc­
curs. 

REMARK 6. The hypothesis that G be convex plays a crucial role in the proof of the 
Theorem. It is easy to show by example that if G is non-negative and integrable, but 
fails to be convex, then the Theorem is not true. Let 

(13) G{t) = rte-at for t ^ O , 

with y and a positive constants. Then (1) and (2) have solutions of the form 

u{Xyt) = u0 sin —j— 

P = 
2 L V p 

is an integer. 
The G in (13), while surely non-convex, also fails to be non-increasing. To see that 

it is just convexity which is at issue here, we can easily find a G which is non-negative, 
non-increasing, integrable but non convex, for which the situation is similar. 

For example, let G have constant value on the interval [0,^] and be zero on (/3, °°). 
Then bounded solutions of (1) and (2) can be constructed as before, if and only 
if, 

£V2a 
7T 

is an odd integer. 
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