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Meccanica dei solidi. - On linear versus nonlinear flow rules in strain 
localization analysis. Nota di GIORGIO BORRE e GIULIO MAIER(*), presenta
ta (**) dal Corrisp. G. MAIER. 

ABSTRACT. - This note contains some remarks on the analysis of bifurcation phenomena, 
specifically strain localization (onset of a strain rate discontinuity), in small-deformation 
elastoplasticity. Nonassociative flow rules are allowed for to cover constitutive models fre
quently adopted for frictional (and softening) materials such as concrete. The conventional 
derivation of the localization criterion resting on an incrementally linear «comparison 
material» is critically reviewed and compared to the criterion resulting from «actual» 
nonlinear plastic flow laws. This communication anticipates, in an abbreviated form, results 
to be presented elsewhere in an extended form: therefore proofs of the propositions and 
various comments are omitted. 
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RIASSUNTO. - Sull'impiego di leggi di scorrimento lineari o nonlineari nei problemi di 
localizzazione in elastoplasticità. Si svolgono alcune considerazioni sui fenomeni di biforca
zione in solidi elastoplastici in regime di « piccole deformazioni » (di linearità geometrica) e 
precisamente sul manifestarsi di localizzazioni intese come discontinuità nel campo delle 
deformazioni incrementali. 

Si considerano leggi nonassociate. Vengono così inclusi nella trattazione modelli 
costitutivi frequentemente adottati per descrivere il comportamento di materiali ad attrito in
terno e soggetti a danneggiamento (nel senso di degrado di rigidezze elastiche in seguito a 
deformazioni anelastiche), oltre che soggetti a manifestazioni di instabilità per incrudimento 
negativo («softening»). Si esamina criticamente il criterio, frequentemente adottato in let
teratura, di localizzazione fondato su «materiale di confronto» incrementalmente lineare e si 
fornisce, corredato da osservazioni comparative, il criterio che risulta dall'assunzione del 
modello di materiale incrementalmente lineare e si fornisce, corredato da osservazioni com
parative, il criterio che risulta dall'assunzione del modello di materiale incrementale non 
lineare. In questa nota alcuni risultati che saranno presentati altrove in forma più estesa e det
tagliata vengono comunicati in forma abbreviata, omettendo le dimostrazioni e vari commenti. 

1. INTRODUCTION 

Strain localization phenomena in a number of technologically important 

categories of materials, have been the object of extensive investigations for years (e.g. 

[6] [11] [16] [17] [18] [19]), and are still attracting much attention in the recent 
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literature, especially from the computational standpoint (e.g. [12] [13] [14] [20]). 
The basic problem concerning localization can be concisely described as follows. 
Consider an infinitesimal neighbourhood of a point in an elastic-plastic solid, or 

an elastic-plastic system (such as a material specimen in a testing machine) which is 
homogeneous as regards constitutive law, stress state and past yielding history. In the 
evolution of such a system the strain localization, understood as the appearance of a 
discontinuity in strain rates, marks the onset of a nonuniform response besides the 
uniform one; in other terms, it represents as bifurcation phenomenon. The evalua
tion of the thresholds at which such a phenomenon occurs and the determination of 
the main relevant kinematic and static features, represent basic questions for the 
nonlinear evolutive analysis up to failure of certain engineering systems, particularly 
of concrete, geomaterials and ceramics. 

Bifurcation of the velocity gradient along a loading path can be caused by 
material destabilizing effects such as softening and lack of normality accomodated in 
the constitutive laws, even in the absence of geometrical destabilizing effects (i.e. 
large deformations affecting equilibrium equations). The notion of softening is 
originated by instability manifestations (understood as negative second order work 
performed by an external agency) observed in experiments on material specimens 
and structural elements in the absence of observable influence of geometry changes 
on equilibrium relations (see e.g. [1] [3]). 

If elastic plastic constitutive laws are used in order to allow for softening in 
boundary value problems, far-reaching implications arise both in the theoretical 
framework and in the numerical solution procedures of such problems. These im
plications have been investigated by various Authors, sometimes compared to, and 
combined with, those due to lack of normality and damage by elastic-plastic coupl
ing (e.g. [2] [10]) and to the implications of geometrical (instead of physical) 
destabilizing effects, which are due to large displacements and strains and are not ac
comodated in the material model chosen for simulation purposes (see e.g. [2] [8] 
[11]). Strain localization phenomena as defined earlier are among the possible conse
quences! of softening and/or other destabilizing factors. 

In this broad, partly still controversial mechanical context, this paper is intend
ed to provide a contribution in the particular direction specified below. 

Traditionally, in order to answer the above specified basic questions, the in
cremental nonlinear elastoplastic constitutive laws are replaced by fictitious linear 
flow rules, i.e. the «actual» materials is replaced by an incrementally linear «com
parison material» (see e.g. [12] [13]). 

Nonassociated flow laws were studied from the uniqueness and stability stand
points by Maier and Hueckel [8] [10], Raniecki and Bruhns [15] and Casey and Lee 
[2]. The second pair of Authors, allowing for finite deformations, established bounds 
to bracket the onset of the actual bifurcation on the basis of suitably chosen in
crementally linear material model. Ortiz, Leroy and Needleman [11] developed a 
finite element method for localized failure analysis, resting on a preliminary solution 
(in each element and at each loading step) of the localization problem above referred 
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to as « basic questions », such solution being obtained by adopting a linearized « com
parison material» model. 

This paper was motivated by the contributions of Ortiz et al. [12] [13] and aims 
at clarifying the links between the consequences of the adoption of an incrementally 
linear (instead of the original nonlinear) flow rule to localization analysis purposes, 
when the elastoplastic material model is of nonassociative type. Although before the 
completion of the present study a paper by B. Loret appeared containing a com
prehensive investigation on the incremental nonlinearity in strain localization [7], 
the results presented here seem to be supplementary to, rather than overlapping on, 
Loret's results and to the earlier ones by Rice and Rudnicki [17] and by Chambon 
and Desrues [4]. 

2. FORMULATION OF THE PROBLEM 

2.1. Constitutive relations 

A nonassociative elastic-plastic constitutive law in incremental (rates) terms can 
be expressed in the following customary form around a stress state at yielding: 

(1) crii = E i jhk(ehk - égk) 

(2) éS = j^X 

(3) XsO 

(4) * - f * - * ,+ !^BS0 
duij d eg 

(5) it>\ = 0 

Here aip ê , eg denote the cartesian tensors of stresses, strains and plastic strains, 
respectively; <t> and $ the yield function and the plastic potential; X is the plastic 
multiplier; Eijhk is the elastic tensor endowed with the usual symmetries. The 
presence of «corners» on the yield surface has been excluded, i.e. the outward nor
mal to it in the stress-point is uniquely defined. 

Substitute eqs. (1), (2) into (4) and solve it with respect to X having set <j> = 0. 
Let the expression of X thus obtained be substituted into eq. (2) and this into (1) and 
solve with respect to ôy. These simple manipulations lead to the re-formulation 
which follows: 

for « unloading » processes (0 < 0): 

Hai 
(6) -—E i j h k é h k<0 

dal} 

4. - RENDICONTI 1988, vol. LXXXH, fase. 3. 
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(7) 

for « loading » 

(8) 

(9) 

having set: 

(10 a) 

(10 b) 

(H) 

(12) 

processes ( *= = 0): 

Piihk = 

Ôïj — Eijhkêhk 

d<t> ^ 
. Eijhkehk^0 

îj = Dijhkéhk 

H _ H H 
à eg doy 

_ di d* 

. i F a * d* 
- TT TT ^iJPQ o s -^rshk 

ri — ric oapq oaTS 

Dijhk = Eijhk — Pijhk 

The scalar H is referred to as hardening modulus and may be negative (softening 
material behaviour); Hc denotes the (negative) critical threshold of internal («snap-
back») instability, which will be ruled out a priori in what follows. Eq. (12) defines 
the elastoplastic (« tangent ») stiffness matrix of the material. 

2.2. Relations governing the strain localization 

Let a strain rate discontinuity across a surface T with normal n} be described in 
a point Xj as: 

(13) [ éij] « é j f - é ù 

denoting by superscripts + and - the outside and inside faces of T with respect to 
direction ni. 
Maxwell kinematic condition (see e.g. [12]) reads: 

<»> [£i-« 
where gi is the vector which defines the discontinuity or «jump» in the velocity 
derivatives. Combining eqs (13) and (14) with and the geometric compatibility 

(15) Cij " 2 \3x , + dx{ 
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one obtains the kinematic equation which is central in the present context: 

(16) [ éij] = - fenj + an,) 

The special cases gi normal to n{ («shear band») and gi parallel to nj («splitting 
mode») are worth noting. 

The equilibrium across the discontinuity surface requires for the stress rate 
discontinuity: 

(17) ^(âiî-cTij) = n i [ aij] = 0 

We will combine below the constitutive relationships (6) - (9), the kinematic 
and static equations (16) and (17), for the three possible cases separately. 

Case 1: unloading-unloading. 
Eq. (7) entails: 

(18) I ay] = Eijhk [ éhkl 

Substituting eq. (16) into (18) and eq. (18) into (17) we have: 

(19a,b) Afjgj = 0, having set Afj • nhEhijknk 

Since matrix Aje is positive definite due to the properties of the elastic tensor Ehijk, 
no vector gj 5* 0 solves eq. (19) and, hence, localization is impossible in this case. 

Case 2: loading-loading. 
Eq. (9) implies: 

(20) [ aij] = D i j h k [ ehk] 

As is case I, substituting eq. (16) into (19) and eq. (19) into (17), we obtain from 

(20): 

(21a,b) Aijgj = 0, where: Ay = nhDhijknk 

The «localization matrix» Ay is not necessarily positive definite. Therefore localiza
tion may occur in this case provided some ni and gi -£ 0 satisfy eq. (21) and 
simultaneously the kinematic equation (16) and the constitutive inequalities (8). 
These are rewritten below for convenience: 

(22a,b) ^ - E y h k é i i O 
day 

— E y h k ( e 4 - [ é h k ] ) ^ 0 
à ay 
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Case 3: loading (on face + ) - unloading (on face - ). 
The constitutive eqs. (7) and (9) combined with (13), require that: 

(23) [ cry] = Dijhkéh
+

k - Eijhk(éh
+

k - [ éhkl ) 

Substitute eq. (16) into (23) and this into (17) to obtain the following 
nonhomogeneous counterpart to the homogeneous eqs. (19) and (21) of cases 1 and 
2: 

(24) Afjgj = nhPhijkéit 

In this case, bifurcation occurs if some vectors ni, gi ^ 0 solve eq. (24) and 
simultaneously satisfy the kinematic eq. (16) and the constitutive inequalities (8) and 
(6). These inequalities are: 

(25a,b) ^ E ^ e & i O ; 
0<7ij 

-^"EiJhk(eh+k- I éhk]0)=gO 

2.3. Localization problems 

On the basis of what precedes, the following basic questions will be addressed 
in the subsequent Sections. These questions have been examined earlier e.g. by Rice 
et al. in [16] [17] [18]. 

Problem A: For given stress state and past yielding history, and, hence, in particular 
for a given hardening (softening) modulus H (eq. (10a)), can strain localization occur 
and which are the relevant discontinuity surface n{ and vector gi? 

Problerri B: Since the hardening modulus H can be regarded as the main discrimi
nant quantity for the present bifurcation phenomenon, what is the threshold 
H* s= inf(H'), H ' being all moduli for which localization is impossible and the only 
possible incremental response preserves homogeneity? 
In order to simplify the notation, we set: 

(26) A = [nhDhijknk]; n=(ni ) ; g = {g} 

3. O N LOCALIZATION CRITERIA FOR GIVEN HARDENING (OR SOFTENING) MODULUS. 

Using the conventional preliminary anlysis carried out in Sec. 2 we state here 
some propositions concerning the localization analysis for given hardening (soften-
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ing) modulus H (problem A). Mechanical implications and interpretations will be 
discussed in the extended version where also formal proofs will be provided. 

PROPOSITION 1. (see e.g. [12]) Any pair of vectors n and g 5* 0, such that 
A (n) g = 0, satisfies all other conditions (22) pertaining to the loading-loading case. 

PROPOSITION 2. In the loading-unloading case the condition det A(n) < 0 is 
sufficient for bifurcation. 

PROPOSITION 3. In the loading-unloading case, the condition det A(n )^0 is 
necessary for bifurcation. 

PROPOSITION 4. In the strain localization problem (A) for given hardening or 
softening modulus H, if both loading-unloading and loading-loading cases are allow
ed for (i.e. « real » nonlinear incremental flow rules are adopted instead of the « linear 
comparison material ») the criterion det A(n) ^ 0 represents a sufficient and 
necessary condition for bifurcation. 

This statement merely condenses propositions 1, 2 and 3. 

4. DETERMINATION OF HARDENING (SOFTENING) RANGES FOR WHICH BIFURCATION OCCURS 

Now let the hardening modulus H be regarded as variable, though still assumed 
to be larger than the internal instability (snap-back) onset value H c . Then the 
following statements can be proved. 

PROPOSITION 5. According to the bifurcation criterion det A(n)g0 (for in
crementally nonlinear materials), localization is possible for any modulus H such 
that Hc < H g H* (« localization range »), where H (« localization onset modulus ») 
defined by eq. (53) is the infimum of the range where localization is not possible. In 
other terms, the set of H values for which localization is possible forms the (simply 
connected) interval HCH*. 

PROPOSITION 6. The localization onset modulus H* can be equivalently determin
ed either by the criterion det A (n) ̂  0 (incrementally nonlinear constitution) or by 
the criterion det A(n) = 0 (linear comparison material); in other terms, for H = H*, 
det A(n) = 0 for some n and non negative for all other directions n. 

5. CLOSING REMARKS 

The conclusions of the foregoing problem formulation (Sec. 2) and propositions 
(Sees. 3 and 4) can be summarized and commented upon as follows. 

(a) The nonpositiveness of the determinant of the localization matrix A (n) con-
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structed with the tangent elastic-plastic tensor and the discontinuity direction n, has 
been proved (in Sec. 3) to provide a sufficient and necessary bifurcation criterion for 
the « real » nonlinear nonassociative flow rules. 

According to Ortiz et al. [12], the determination of the normal n defining the 
discontinuity plane in the incrementally linear (comparison material) approach is 
numerically performed by minimizing det A(n) with respect to n. This procedure 
gives discontinuity directions n for which the determinant of the localization matrix 
A is in general negative and, hence, violates the condition det A(n) = 0. Such a 
violation is usually accepted assuming that det A(n) has reached negative values as a 
consequence of a continuous variation from positive values. This implies a transition 
through the zero, which, however, cannot be detected by a customary approximate 
time-integration, algorithm due to the finiteness of the time step. 

On the other hand, if the incremental nonlinearity is taken into account, the 
set of discontinuity directions n enabling localization is widened up to include all 
normals n for which det A (n) < 0. The present approach and resulting criterion det 
A (n) ^ 0 does not require a continuous variation of det A (n), in order to legitimate 
the numerical procedure discussed above. 

The above distinction is worth noticing when the modulus H exhibits a discon
tinuity («jump») along the plastic evolution, as it does for some material models 
(e.g. with piecewise linear hardening). This circumstance becomes self-evident in the 
uniaxial stress case of a tensile uniform bar model of a material whose behaviour is 
described by a softening stress-strain constitution. 

(b) When incremental nonlinearity is assumed, the condition det A(n) = 0 (in 
Sec. 4) singles out the critical value H*, as it does under the stronger assumption of 
incremental linearity (H* denotes the maximum hardening modulus for which bifur
cation occurs). By the path of reasoning adopted in the present note, the bifurcation 
for H < H* is demonstrated to occur, in the sense that the existence of a 
nonuniform solution besides the uniform one is guaranteed. This conclusion in
cludes the one reached by Rice and Rudnicki [17] by a different path of reasoning 
for incremental nonlinearity; however, although differing from their approach, the 
criterion det A(n)^0 turns out to apply also in the transition case H = H*. 
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