ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Silvana Franciosi, Francesco de Giovanni

On automorphisms fixing subnormal subgroups of soluble groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **82** (1988), n.2, p. 217–222. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1988_8_82_2_217_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1988.

Atti Acc. Rend. fis. (8), LXXXII (1988), pp. 217-222

Teoria dei gruppi. — On automorphisms fixing subnormal subgroups of soluble groups. Nota di SILVANA FRANCIOSI e FRANCESCO DE GIOVANNI, presentata (*) dal Socio G. ZAPPA.

ABSTRACT. – The group $Aut_{sn}G$ of all automorphisms leaving invariant every subnormal subgroup of the group G is studied. In particular it is proved that $Aut_{sn}G$ is metabelian if G is soluble, and that $Aut_{sn}G$ is either finite or abelian if G is polycyclic.

KEY WORDS: Automorphisms; Subnormal subgroups; Soluble groups.

RIASSUNTO. – Sugli automorfismi che fissano i sottogruppi subnormali dei gruppi risolubili. Si prende in esame il gruppo Aut_{sn}G degli automorfismi che fissano tutti i sottogruppi subnormali del gruppo G. In particolare si prova che se G è un gruppo risolubile il gruppo Aut_{sn}G è metabeliano, mentre se G è policiclico il gruppo Aut_{sn}G risulta abeliano oppure finito.

INTRODUCTION

An automorphism of a group G is called a *power automorphism* if it maps every subgroup of G onto itself; the set PAutG of all power automorphism of G is a normal subgroup of the automorphism group AutG of G. The structure of PAutG was described by Cooper in [1] (see also [6]).

More generally, it is of interest to investigate the structure of the group of all automorphisms of a group G which leave some specified subgroups of G invariant. In this direction the group Aut_nG of all automorphisms of the group G which fix every normal subgroup of G was studied in [2].

Our object here is to obtain information about the group $Aut_{sn}G$ of all automorphisms of G which leave every subnormal subgroup of G invariant. Clearly $Aut_{sn}G$ is a normal subgroup of AutG and, if G is soluble, also $Aut_{sn}G$ is soluble, since its commutator subgroup stabilizes the derived series of G.

Our main results are the following:

THEOREM A. – Let G be a group. If G is either hyperabelian or hypoabelian, then the group $Aut_{sn}G$ is metabelian.

(*) Nella seduta del 12 dicembre 1987.

THEOREM B. – Let G be a polycyclic group. Then the group $Aut_{sn}G$ is either finite or abelian.

Here recall that a group G is called *hyperabelian* if it has an ascending normal series with abelian factors, and G is *hypoabelian* if it has a descending (normal) series with abelian factors.

Theorems A and B show how the behaviour of $Aut_{sn}G$ for a soluble group G is similar to that of a soluble T-group, i.e. a soluble group in which normality is a transitive relation. Such groups were described by Gaschütz [3] and Robinson [6]. However, in spite of these similarities, the structure of $Aut_{sn}G$ can be quite different from that of soluble T-groups, as it is shown by examples in section 3.

In the investigation of $\operatorname{Aut}_{\operatorname{sn}}G$ an important role is played by the *Wielandt* subgroup $\omega(G)$ of G, i.e. the intersection of the normalizers of all subnormal subgroups of G. In particular it will be shown that $\operatorname{Aut}_{\operatorname{sn}}G$ acts trivially on the factor group $G/\omega(G)$.

Our notation is standard and can be found in [8]. In particular:

InnG is the group of all inner automorphisms of the group G,

 $K \Join H$ is the semidirect product of H and K, where H is the normal factor.

A power automorphism τ of a group G is called *homogeneous* if elements of the same order of G are mapped by τ to the same power. Recall that every power automorphism of an abelian group is homogeneous (see [1]).

PROOF OF THE THEOREMS

The following two lemmas are needed in the proofs of the Theorems.

LEMMA 2.1. – For each group G, the group $Aut_{sn}G$ acts trivially on the factor group $G/\omega(G)$.

Proof. The group $(InnG) \cap (Aut_{sn}G)$ is the set of all inner automorphisms of G fixing every subnormal subgroup, and hence it corresponds to $\omega(G)/Z(G)$ in the natural isomorphism between InnG and G/Z(G). Clearly we have that $[InnG,Aut_{sn}G] \leq (InnG) \cap (Aut_{sn}G)$, so that $[G,Aut_{sn}G] \leq \omega(G)$.

LEMMA 2.2. – Let G be a group and let Θ be a soluble subgroup of Aut_{sn}G which is normalized by InnG. Then Θ is metabelian.

Proof. The set H of all elements of G which induce on G an automorphism belonging to Θ is a normal subgroup of G, which is contained in the Wielandt subgroup $\omega(G)$ of G. In particular H is a soluble T-group, and hence it is metabelian (see [6]). Since $[InnG,\Theta] \leq (InnG) \cap \Theta$, it follows that $K = [G,\Theta]$ is contained in H. Therefore the commutator subgroup L = K' of K is an abelian normal subgroup of G. Every element τ of Θ acts on L as a homogeneous power automorphism, and hence $[x,\tau]$ acts trivially on L for each element x of G. Thus $L \leq Z(K)$ and K is nilpotent. It follows that Θ induces on K a group of power automorphisms. Then Θ' stabilizes the series $G \geq K \geq 1$, and Θ is metabelian (see [4]).

Proof of theorem A

Suppose first that G is hyperabelian, and write $\Gamma = \operatorname{Aut}_{\operatorname{sn}} G$. The set H of all elements of G fixed by $\Gamma^{(2)}$ is a normal subgroup of G. Assume that H is properly contained in G, and let K/H be a non-trivial abelian normal subgroup of G/H. Then Γ induces a group of power automorphisms on K/H, so that Γ' acts trivially on K/H and $\Gamma^{(2)}$ stabilizes the series $K > H \ge 1$. Therefore $\Gamma^{(3)}$ acts trivially on K. The group Γ^* of all automorphisms induced by Γ on K is a soluble subgroup of Aut_{sn}K, and by Lemma 2.2 it follows that Γ^* is metabelian. Hence $\Gamma^{(2)}$ acts trivially on K, which is impossible. Therefore H = G and Γ is metabelian.

Suppose now that G is hypoabelian, and write again $\Gamma = \operatorname{Aut_{sn}}G$. Let N be the smallest normal subgroup of G such that $\Gamma^{(2)}$ acts trivially on G/N. Since Γ induces a group of power automorphisms on N/N', then Γ' acts trivially on N/N' and $\Gamma^{(2)}$ stabilizes the series $G \ge N \ge N'$. Therefore $\Gamma^{(3)}$ acts trivially on G/N'. The group Γ^* of all automorphisms induced by Γ on G/N' is a soluble subgroup of Aut_{sn}(G/N'), and by Lemma 2.2 it follows that Γ^* is metabelian. Hence $\Gamma^{(2)}$ acts trivially on G/N' and N = N'. This shows that N = 1 and Γ is metabelian.

REMARK. - (a) Theorem A becomes false for SI-groups in general, as can be seen by the consideration of a non-soluble locally nilpotent T-group (see [5] for examples of such groups).

(b) It is well-known that in any T-group G the derived series stops with $G^{(2)}$. This is not true for $Aut_{sn}G$ when G is an arbitrary group. In fact, if G is one of the orthogonal groups O_8^+ (3), O_8^+ (5), O_8^+ (7) and $\Gamma = Aut_{sn}G$, then $\Gamma^{(2)} \neq \Gamma^{(3)}$.

Proof of theorem B

The Wielandt subgroup A of G is a finitely generated soluble T-group, and hence it is either finite or abelian (see [6]). Write $\Gamma = \text{Aut}_{sn}G$ and let Θ be the centralizer of A in Γ . Clearly Γ is polycyclic, as a soluble group of automorphisms of the polycyclic group G (see [8] Part 1, p. 82).

Suppose first that A is finite, and let e be the exponent of A. By Lemma 2.1 Θ acts trivially on G/A and A, so that $\tau^e = 1$ for each $\tau \in \Theta$. Therefore Θ is finite. This shows that Γ is finite in this case.

Suppose now that A is infinite, and hence abelian. If $\Gamma = \Theta$, then Γ is obviously abelian. Assume that Θ is properly contained in Γ . The factor group Γ/Θ has order 2, since it is isomorphic with a group of power automorphisms of the non-

periodic abelian group A. If μ is any element of $\Gamma \setminus \Theta$, then μ acts as the inversion on A and hence has order 2; it follows that $\Gamma = \langle \mu \rangle \ltimes \Theta$.

For each $\tau \in \Theta$ and $x \in G$, we have that $x^{\mu} = xa$, $x^{\tau} = xb$, where a and b are elements of A, and hence $x^{\mu\tau\mu} = (xa)^{\tau\mu} = (x^{\tau}a)^{\mu} = (xba)^{\mu} = xb^{-1} = x^{\tau^{-1}}$. Then $\Gamma' = [\Theta,\mu] = \Theta^2$ and Γ/Γ' is finite.

Let p be an odd prime number, and assume that the factor group G/A^p is infinte. Then the Fitting subgroup F/A^p of G/A^p is a nilpotent non-periodic subgroup. Since μ acts as a power automorphism on F/A^p and as the inversion on A/A^p , it follows that F/A^p is abelian (see [1], Corollary 4.2.3) and μ acts as the inversion on it. This is impossible, since μ acts trivially on F/A. This contradiction shows that G/A^p is finite; in particular G/A is a finite group. Since A normalizes every subnormal subgroup of G, we obtain that the subnormal subgroups of G have bounded defect. Then it is well-known that the intersection of an arbitrary collection of subnormal subgroups of G is subnormal, and hence G is finite-by-nilpotent by a result of Robinson [7]. If N is a finite normal subgroup of G with nilpotent factor group G/N, then Γ induces a group of power automorphisms on G/N, so that Γ' acts trivially on $G/(A \cap N)$. Since Γ' acts trivially on A, it follows that Γ' has finite exponent, and hence it is finite. Therefore Γ is finite. The proof of Theorem B is complete.

Some counterexamples

The first example shows that Aut_{sn}G is not always a T-group.

EXAMPLE 1. – Let p be an odd prime, and let $G = \langle x, y, | x^{p^2} = y^2 = (xy)^2 = 1 \rangle$. Then every subnormal subgroup of G is characteristic, and hence $\Gamma = Aut_{sn}G = AutG$. Since every automorphism of $\langle x \rangle$ is induced by an automorphism of G, it follows that p divides the order of Γ/Γ' . Furthermore Γ' acts trivially on $G/\langle x \rangle$ and $\langle x \rangle$, so that it is a p-group. Thus it is well-known that Γ is not a T-group (see [6]).

If G is a soluble p-group of finite exponent, then G is a Baer group (see [8] Part 2, p. 49), so that $Aut_{sn}G = PAutG$ is abelian, and it is a p-group of finite exponent, provided that G is not abelian (see [1], Corollary 5.1.2). The situation is different for p-groups of infinite exponent.

EXAMPLE 2. – Let G be the wreath product of a p^{∞} -group and a group of order p, and let B be the base group of G; then $G = \langle x \rangle \ltimes B$ is the semidirect product of B and a group $\langle x \rangle$ of order p. It is easy to see that every subnormal subgroup of G either is contained in B or contains [B,x]. Let $\mu \neq 1$ be a p-adic integer such that $\mu \equiv 1(p)$, and let n be the least positive integer such that $\mu \equiv 1(p^n)$). The positions

$$x^{\delta} = x$$
, $b^{\delta} = b^{\mu}$ for all $b \in B$

2

define an automorphism δ of G acting as μ on B and G/[B,x]. Therefore δ belongs to Aut_{sn}G. If τ is an inner automorphism of G which is induced by an element u of B and has order pⁿ, then obviously $\tau \in \text{Aut}_{sn}G$ and $\delta \tau \neq \tau \delta$ since u⁻¹u $\notin Z(G)$. This shows that (InnG) $\cap(Z(\text{Aut}_{sn}G))$ is finite, and therefore Aut_{sn}G is not nilpotent. Of course in this case Aut_{sn}G is not periodic.

It is well-known that a torsion-free soluble T-group is abelian ([6]); the following example shows that $Aut_{sn}G$ can be non-nilpotent when G is a torsion-free soluble group.

EXAMPLE 3. – Let H be the additive group of rational numbers (multiplicatively written), and let a be the automorphism of H defined by the position $h^a = h^n$ for all $h \in H$, where n is an integer such that |n| > 1. Put $G = \langle a \rangle \ltimes H$. For each element $x \in G/H$ we have that [H,x] = H. This shows that every subnormal subgroup of G either is contained in H or contains H. Therefore the automorphism δ of G defined by the positions

 $a^{\delta} = a$, $h^{\delta} = h^{-1}$ for all $h \in H$

belongs to $\operatorname{Aut}_{\operatorname{sn}}G$. If τ is the inner automorphism of G induced by an element $k \neq 1$ of H, we have that $\delta \tau \neq \tau \delta$ since Z(G) = 1. Therefore the group of inner automorphisms of G induced by elements of H has trivial intersection with the centre of $\operatorname{Aut}_{\operatorname{sn}}G$, and hence $\operatorname{Aut}_{\operatorname{sn}}G$ is not nilpotent. Note also that the group $\operatorname{Aut}_{\operatorname{sn}}G$ is not torsion-free.

The last example shows that Aut_{sn}G is not always locally supersoluble.

EXAMPLE 4. – Let H be the additive group of rational numbers (multiplicatively written), and let a be the inversion of H. Put $G = \langle a \rangle \ltimes H$. Clearly every proper subnormal subgroup of G is contained in H. Let u be a non-trivial element of H and let r be a rational number greater than 1; then the positions

$$a^{\sigma} = au$$
, $h^{\sigma} = h^{r}$ for all $h \in H$

define an automorphism σ of G which belongs to Aut_{sn}G. If τ is the inner automorphism of G induced by a and $\delta = \tau \sigma \tau$, it is not difficult to see that the group $\Lambda = \langle \sigma, \delta \rangle$ is a torsion-free normal subgroup of $\Theta = \langle \sigma, \tau \rangle$. Let $\langle \mu \rangle$ be a Θ -invariant cyclic subgroup of Λ ; then there exist an element v of H and a positive rational number s such that $a^{\mu} = av$ and $h^{\mu} = h^{s}$ for all $h \in H$. Since the conjugates of μ by τ and σ are equal either to μ or to μ^{-1} , it follows that μ is the identity. Therefore Λ does not contain a cyclic non-trivial Θ -invariant subgroup. This shows that the group Aut_{sn}G is not locally supersoluble.

References

- [1] C.D.H. COOPER, Power automorphisms of a group, «Math. Z.» 107 (1968), 335-356.
- [2] S. FRANCIOSI and F. DE GIOVANNI, On automorphisms fixing normal subgroups of nilpotent groups, «Boll. Un. Mat. Ital.», (7) 1 B (1987), 1161-1170.
- [3] W. GASCHÜTZ, Gruppen in denen das Normalteilersein transitiv ist, «J. Reine Angew. Math.» 198 (1957), 87-92.
- [4] P. HALL, Some sufficient conditions for a group to be nilpotent, «Illinois J. Math.» 2 (1958), 787-801.
- [5] F. LEINEN, Existenziell abgeschlossene LX-Gruppen, «Dissertation (Albert-Ludwigs Universität Freiburg i. Br.)», 1984.
- [6] D.J.S. ROBINSON, Groups in which normality is a transitive relation, «Proc. Cambridge Philos. Soc. » 60 (1964), 21-38.
- [7] D.J.S. ROBINSON, On finitely generated soluble groups, «Proc. London Math. Soc.» (3) 15 (1965), 508-516.
- [8] D.J.S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972.