ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SALVATORE GIUFFRIDA

Sulla trasversalità di due superfici in P³

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 81 (1987), n.2, p. 119–123. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1987_8_81_2_119_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Sulla trasversalità di due superfici in P³ (*). Nota di Salvatore Giuffrida (***), presentata (***) dal Socio E. Marchionna.

ABSTRACT. — On transversality of two surfaces in \mathbb{P}^3 . Let $\mathbb{C} \subset \mathbb{P}^3$ be a reduced and irreducible curve, and $\mathbb{I}(\mathbb{C}) = (f_1, f_2, \ldots, f_m)$ be the homogeneous ideal of \mathbb{C} , where f_1, f_2, \ldots, f_m are a minimal system of generators for $\mathbb{I}(\mathbb{C})$.

In § 2 we find a necessary and sufficient condition in order that two surfaces F_i , F_j , having equations $f_i = 0$, $f_j = 0$ (i, j = 1, 2, ..., m), intersect transversally along C.

In § 3 we give an application of this result to arithmetically Cohen-Macaulay curves.

KEY WORDS: Transversality; Surface; Curve.

RIASSUNTO. — Siano $C \subset \mathbf{P}^8$ una curva ridotta ed irriducibile, ed $f_1, f_2, \ldots f_m$ un sistema minimale di generatori dell'ideale omogeneo I C).

Nel § 2 determiniamo una condizione necessaria e sufficiente perché due superfici F_i , F_j , aventi equazioni $f_i=0$, $f_j=0$ (i, j=1, 2, ..., m), si sechino trasversalmente lungo C.

Nel § 3 applichiamo questo risultato alle curve aritmeticamente di Cohen-Macaulay.

§ 1

Sia C una curva ridotta ed irriducibile di $\mathbf{P}^3 = \mathbf{P}_k^3$, spazio proiettivo su un campo k algebricamente chiuso.

Indichiamo con I (C) l'ideale omogeneo di C in K $[x_0, x_1, x_2, x_3]$, con $f_1, f_2, \ldots, f_m \ (m \ge 3)$ un sistema minimale di generatori di I (C), e con F_1, F_2, \ldots, F_m le superfici aventi equazioni rispettivamente $f_1 = 0$, $f_2 = 0, \ldots, f_m = 0$.

Possiamo supporre senza perdita di generalità che le superfici F_1, F_2, \ldots, F_m siano ridotte ed irriducibili.

Diremo che due delle suddette superfici, per esempio F_1 ed F_2 , si recano trasversalmente lungo C se la curva è una sottovarietà semplice per ciascuna delle due superfici ed i punti di C nei quali il piano tangente ad F_1 coincide col piano tangente ad F_2 formano un chiuso di dimensione zero di C (cfr. [G] per una definizione più completa di molteplicità di intersezione di due varietà lungo una sottovarietà comune).

- (*) Lavoro eseguito con fondi erogati dal M.P.I.
- (**) Dipartimento di Matematica Catania.
- (***) Nella seduta del 13 dicembre 1986.

È facile verificare che F₁ ed F₂ si recano trasversalmente lungo C se e solo se esiste un aperto affine U nel quale

$$(R/_{I_X})_{I_C} \simeq (R/_{I_C})_{I_C}$$

ove $R=\Gamma$ (U , $\mathcal{O}_{\mathbf{P}}$) , I_C ed I_X sono gli ideali affini di C e della completa intersezione $X=F_1\bigcap F_2$.

Per le nozioni non esplicitamente richiamate si rinvia ad [H].

§ 2.

Consideriamo la risoluzione localmente libera di C ([R]):

$$0 \longrightarrow \mathscr{E} \longrightarrow \bigoplus_{i=1}^{m} \mathscr{O}_{\mathbf{P}} \left(-a_{i} \right) \xrightarrow{f = (f_{1}, f_{2}, \dots, f_{m})} \mathscr{O}_{\mathbf{P}} \to \mathscr{O}_{\mathbf{C}} \to 0$$

in cui gli interi positivi a_i sono i gradi dei generatori f_i , $\mathscr E$ è un fibrato vettoriale di rango m-1; consideriamo anche il diagramma:

$$\mathscr{E} \xrightarrow{\varphi} \overset{m}{\oplus} \mathscr{O}_{\mathbf{p}} \left(-a_{i} \right)$$

$$\downarrow^{i=1} \qquad \qquad \downarrow^{\pi}$$

$$\oplus \mathscr{O}_{\mathbf{p}} \left(-a_{i} \right)$$

$$\downarrow^{i=3} \mathscr{O}_{\mathbf{p}} \left(-a_{i} \right)$$

in cui π è la proiezione sulle ultime m-2 componenti, $\psi=\pi\circ \phi$.

Proposizione. Con le notazioni precedenti condizione necessaria e sufficiente perché F_1 ed F_2 si sechino trasversalmente lungo C è che il morfismo ψ abbia rango massimo nel punto generico di C.

Dimostrazione. Consideriamo il diagramma commutativo a righe esatte.

$$0 \to \mathscr{E} \xrightarrow{\varphi} \xrightarrow{\varphi} \bigoplus_{i=1}^{m} \mathscr{O}_{\mathbf{P}} (-a_{i}) \xrightarrow{f = (f_{1}, f_{2}, \dots, f_{m})} \to \mathscr{O}_{\mathbf{P}} \xrightarrow{p} \mathscr{O}_{\mathbf{C}} \to 0$$

$$\uparrow \alpha \qquad \beta \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \downarrow \qquad \uparrow \qquad$$

in cui la seconda riga è la risoluzione (Koszul) della completa intersezione $X = F_1 \cap F_2$.

Considerando un aperto affine U in cui E si banalizzi e localizzando nel punto generico di C si ha il diagramma

in cui I_C ed I_X sono gli ideali affini di C ed X in $R = \Gamma(U, \mathcal{O}_P)$. Abbiamo indicato ancora con $f_1, f_2, \ldots f_m$ le equazioni affini delle superfici F_1, F_2, \ldots, F_m . Il morfismo β è l'immersione sulle due prime componenti, γ è suriettivo.

Sia $A \in \mathbb{R}^{m,-m^1}$ la matrice associata a φ ; indichiamo con A_{ij} la sottomatrice che si ottiene da A sopprimendo le righe di posti i e j.

Nell'ipotesi che $rk(A_{12}) = m - 2$ in un aperto di C, per provare che F_1 ed F_2 si secano trasversalmente lungo C, basta provare che γ è un isomorfismo.

Nel diagramma (1) sia $a \in \operatorname{Ker} \gamma$, $\bar{a} \in p'^{-1}(a)$; poiché $p(\bar{a}) = 0$ risulta $\bar{a} \in \operatorname{Imf}$. Sia $q = (q_1, q_2, q_3, \ldots, q_m) \in (R_{I_C})^m$ un elemento tale che $f(q) = \bar{a}$.

Vogliamo provare che esiste un elemento $\overline{q}=(\overline{q}_1\,,\overline{q}_2\,,0\,,\dots,0)$ tale che $f(\overline{q})=f'(\overline{q}_1\,,\overline{q}_2)=\overline{a}$. Ciò si verifica se e solo se esiste un elemento $q'=(q'_1\,,q'_2\,,q_3\,,\dots,q_m)\in (\mathbf{R}_{\mathbf{I}_{\mathbf{C}}})^m$ tale che $q'\in \mathrm{Im}\, \varphi$, cioè se il sistema

$$AZ = q'$$

ha soluzione in R_{I_C} per qualche q_1' , $q_2' \in R_{I_C}$.

Dal sistema (2) sopprimendo le prime due righe si ottiene un altro sistema

(3)
$$A_{1,2}Z = \begin{bmatrix} q_3 \\ \cdot \\ \cdot \\ \cdot \\ q_m \end{bmatrix}$$

che ha soluzione in R_{I_C} perché $rk(A_{1,2})=m-2$ nel punto generico di C, quindi i minori di ordine m-2 di $A_{1,2}$ non sono tutti nulli lungo C.

Una soluzione del sistema (3) è anche una soluzione del sistema (2) per l'arbitrarietà di q_1' e q_2' .

Viceversa. Poiché le superfici F₁ ed F₂ si secano trasversalmente lungo C, il morfismo

$$A_{1,2}: (R_{I_C})^{m-1} \longrightarrow (R_{I_C})^{m-2}$$

individuato dalla matrice A_{1,2} è suriettivo.

Infatti preso un elemento $q=(q_1$, q_2 , q_3 , ..., $q_m) \in (R_{I_C})^m$ risulta, dal diagramma (1), $p' \circ f(q) = p \circ f(q) = 0$, perciò esiste un elemento (q_1', q_2') in $(R_{I_C})^2$ tale che $f'(q_1', q_2') = f(q)$.

Poiché $f(q_1-q_1'$, q_2-q_2' , q_3 , . . . , $q_m)=0$ il sistema

$$ext{AZ} = egin{array}{c} q_1 - q_1' \ q_2 - q_2' \ q_3 \ dots \ q_m \end{array}$$

ha soluzione in $R_{I_{C}}$, quindi anche il sistema

ha soluzione qualunque siano q_3 , ..., q_m in R_{I_C} .

È suriettivo anche il morfismo

$$\Lambda^{\textit{m}-\textit{2}}\,\mathbf{A}_{\mathsf{1},2}:\Lambda^{\textit{m}-\textit{2}}\,(\mathbf{R}_{\mathbf{I}_{\mathbf{C}}})^{\textit{m}-\textit{1}} \longrightarrow \Lambda^{\textit{m}-\textit{2}}\,(\mathbf{R}_{\mathbf{I}_{\mathbf{C}}})^{\textit{m}-\textit{2}} = \mathbf{R}_{\mathbf{I}_{\mathbf{C}}}$$

che è individuato dai minori di ordine m-2 di $A_{1,2}$.

Questi ultimi, così, risultano essere non tutti nulli nel punto generico di C.

§ 3.

Vogliamo applicare il Teorema dimostrato nel §2 alle curve aritmeticamente di Cohen-Macaulay.

PROPOSIZIONE. Se C è una curva aritmeticamente di Cohen-Macaulay, I (C) = (f_1, f_2, \ldots, f_m) , allora due qualunque superfici F_i , F_j aventi equazioni $f_i = 0$, $f_j = 0$ ($i, j = 1, 2, \ldots, m$; $i \neq j$ si secano trasversalmente lungo C.

Dimostrazione. Basta provare la tesi per F₁ ed F₂. È noto che C ammette una risoluzione minimale libera ([P.S.])

$$0 \longrightarrow \bigoplus_{i=1}^{m-1} \mathcal{O}_{\mathbf{P}} (-b_i) \longrightarrow \bigoplus_{i=1}^{\varphi} \mathcal{O}_{\mathbf{P}} (-a_i) \longrightarrow \bigoplus_{i=1}^{f = (f_1, f_2, \dots, f_m)} \mathcal{O}_{\mathbf{P}} \longrightarrow \mathcal{O}_{\mathbf{C}} \longrightarrow 0$$

in cui $a_i = \deg f_i$ $(i=1,2,\ldots,m)$, il morfismo φ è individuato da una matrice $A=(a_{rs})$ ad elementi forme di grado positivo in k $[x_0,x_1,x_2,x_3]$, i cui minori di ordine m-1 hanno gradi a_1,a_2,\ldots,a_m e generano I(C).

Indichiamo con A_i e con $A_{i,j}$ le sottomatrici ottenute da A cancellando rispettivamente la *i*-esima riga e le righe di posti i, j. Poniamo $\alpha_i = \det A_i$.

Dobbiamo provare che $A_{1,2}$ ha rango massimo in un aperto di C. Siano β_1 , β_2 ,..., β_{m-1} i minori di ordine m-2 di $A_{1,2}$, e supponiamo che $\beta_t \in I(C)$ $(t=1,2,\ldots,m-1)$.

Si avrebbero le relazioni

$$\beta_t = p_{t1} \alpha_1 + p_{t2} \alpha_2 + \ldots + p_{tm} \alpha_m$$

nelle quali deve essere $p_{t1} = p_{t2} = 0$ in quanto α_1 ed α_2 hanno grado maggiore di β_1 , β_2 , ..., β_{m-1} .

Quindi $\beta_t \in (\alpha_3, \ldots, \alpha_m)$ e perciò $\alpha_1, \alpha_2 \in (\alpha_3, \ldots, \alpha_m)$ che è assurdo.

BIBLIOGRAFIA

- [G] D. GALLARATI (1976) Problemi di completa interferenza in Geometria Algebrica.
 « Rend. del Sem. della Fac. di Scienze dell'Università di Cagliari », 46.
- [H] R. HARTSHORNE (1977) Algebraic Geometry, Springer-Verlag, New York.
- [P.S.] C. Peskine e L. Szpiro (1974) Liaison des varietes algebriques. « Inv. Math. », 26.
 - [R] P. Rao (1979) Liaison among curves in P³. « Inv. Math. », 50.