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Meccanica dei fluidi. — A non-local theory of superfluidity (•). 
Nota di MAURO FABRIZIO e GIORGIO GENTILI <•*), presentata <***) dal 
Corrisp. T . MANACORDA. 

ABSTRACT. — We will formulate a macroscopic theory of Superfluidity, using a 
particular constitutive equation of differential form which we will demonstrate to be 
equivalent to a non-local relation between the stress and the density. 
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RIASSUNTO. — Una teoria non-locale della superfluidità. Viene formulata una teoria 
macroscopica per la Superfluidità, facendo uso di una particolare equazione costitutiva 
di tipo differenziale che si dimostra essere equivalente ad una relazione non locale tra 
gli sforzi e la densità. 

1. INTRODUCTION 

As in macroscopic Landau theory we suppose Hell fluid composed of a 
mixture of normal fluid and superfluid, whose density pn, ps and velocity vn,vs 

are related by: 

(1) ?=^?n+?s , pV~pnVn+ psVs 

It is well-known that the ratio pw/p goes to'zero when the temperature goes 
to absolute zetro, i.e. Hell is all in superfluid state at zero absolute temperature. 
Therefore p = ps, v — vs and the motion equations will be (see Putterman [1], 
Atkin and Fox [2-3]): 

(2) " l + V ' P ^ O . 

(3) pi = — pV [i + pò 

where the vector /"== Vfx represents the action exerted by internal forces, b 
the body forces. Because the superfluid component is able to flow without 
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resistence, the work of internal forces is necessarily equal to zero on every cyclic 
process; i.e. exists a function e, called internal energy, such that: 

(4) —— \ e àm =. p / • v dx 

n Q 

where Q c R3 is the domain in which the superfluid is placed. 

Now we have to explain the constitutive equation for the vector f~Vy.. 

In Landau theory [4] the dissipationless behaviour is explained by means 
of a constitutive equation for y. similar to the perfect fluid one, i.e. he supposed 
the Pascal's law [i-'=J (X (p). Furthermore, on the grounds of microscopic consi
derations, Landau hypothesizes the condition 

(5) V X vs = 0 

that has the meaning of a kinematic constraint. 

Such an approach seems questionable because it doesn't take into account 
the peculiar properties of superfluids, different from the perfect ones. Fur
thermore condition (5) cannot be thought of as characteristic of superfluids 
only, because when the fluid is irrotational initially, it can be obtained by (3) 
through considerations valid also for perfect fluids. In other words according 
to the Landau theory it should always be possible to obtain a superfluid from a 
perfect one when the initial conditions are suitably chosen. 

Moreover relation (5) can be also questioned because it is invariant for 
changes in the frame of reference [2-3] as should happen for every equation 
representing a constraint. 

Finally, as Putterman writes in [1], " the central macroscopic problem is 
that of finding the modification of two fluid thermo-hydrodynamics to more 
fully include the macroscopic quantum effects . . . for these effects the stresses 
are not isotropic depending on the deformation, so that Pascal's Law is not 
obtained ". Namely the mascroscopic quantum effects point out a non-local 
constitutive equation between stress and density. 

Following the idea proposed by London [5] for the study of superconduc
tivity, we will make use of a constitutive equation of differential type, which 
we will demonstrate to be equivalent to a non-local equation [6], as happens 
in superconductivity. Such a constitutive equation allows us to explain the 
absence of viscosity and leads to a non-kinematic constraint which generalizes (5). 

2. A NON-LOCAL CONSTITUTIVE EQUATION FOR Hel l 

We suppose that Hel l is all in superfluid state, i.e. pn = 0 and the motion 
equations are given by (2), (3). 
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CONSTITUTIVE HYPOTESIS. For a superfluid material we will sup
pose the vector f related to the density p through the differential equation : 

(6) V - / = X p 

where X is a suitable parameter characteristic of the material. 

We will discuss now the consequence of equation (6). If we derive with 
respect to time and take into account equation (2), we have: 

(7) V . - | t = —XV -(pò) 
dt 

from which we obtain 

(8) -L = _ A p * + V x A 
ot 

where A is an arbitrary vector function. Furthermore, from (7) integrating on 
the domain ti, we have: 

(9) f'-^- -nda==;— fpo • i i cb = 0-

It is therefore compatible with this last relation the requirement that on 
the part of the boundary of Q resulting a rigid wall we have: 

(10) / - w = 0 on dQ. 

As a consequence / = V[x results parallel to the surface where the fluid 
is contained. Such condition accounts for the so called " fountain effect ". 

In fact in order for the fluid to be able to climb on the wall it is necessary 
for the gravity to be overcome by the internal force / along the surface of the 
containing vessel. Moreover making use of (8) we can prove the absence of 
dissipation. Let us consider in fact the integral 

(11) — f / • pv dx = 1/X [ {/ • Qf/dt —f • • V*A} d# 

where we have taken into account (8). Because of the divergence theorem 
we have 

(12) — I / • pv dx = — - - — i pdx— — I (JIV X A • n da + 

a a dQ 

H I [xV • V X Adx 

a. 
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Therefore, being V • V X A = 0 on O and V X A -w = 0 on 8 0 it 
results : 

(13) ^^fp^-jf^éx 

The equality (4) is proved and then the absence of dissipation. 
The constitutive equation (6) is given in differential form. It is however 

also possible to give it an expression as a functional equation. In fact equa
tion (6) must be integrated with the boundary condition 

/ . n = 0 on 8 ^ 
(14) 

{JL = [X0 on dQ,2=^ dQ\^dQ1 

where 8Q2 is the part of the boundary that is free. The problem can then be 
written as: 

(15) V • V(JL — Xp on £1 

(16) V[i -w = 0 on Ô&! 

(17) [i = \L0 on 8Q 2 . 

When we suppose the density p on £1 known, the problem becomes the 
classical problem of Dirichet-Newmann for the Poisson equation, that admits 
solution under wide hypothesis of regularity; moreover the solution is unique 
when 8 Q 2 ^ 0 . Under such regularity hypothesis it is possible to express [L 
as a function of p ( •, t) through the functional : 

(18) j i ( * f O = M p ( - , * ) ) -

One can notice that the fluid is not barotropic; the constitutive equation 
turns out to be non-local, analogously with what one finds in superconductivity. 
Equation (18) has then the meaning of the constitutive equation for the su-
perfluid, since it contains equation (6). Moreover the relation (18) is certainly 
objective, because it relates scalar quantities. 

Finally from (8), since /==* VJA, one obtains: 

(19)- XV X pv = V X V X A 

where A 'is such that 

(20) A - n = 0 on 8 ^ . 
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Among the possible choices for A there are the ones for which 

V x V x A = 0 on Q, V x A - n = 0 on 6£ix. 

In such a case from (19) one obtains 

(21) V X p ^ O . 

This condition, which is not exactly coincident with the Landau hypothe
sis (5), is not the only constraint for the momentum pi> because such constraints 
are related by equation (19). 

Now we consider the case in which the temperature 6 is not zero but con
stant on all fluid. Then Hel l is described by means of a mixture of two fluids 
non-interacting. The basic variables of the theory are the densities pn, p„ 
which are related to the density p and velocity v by (1). 

As in Landau theory [4], the continuity equations and the balances of linear 
momentum for the normal and superfluid components are expressed in con
ventional form: 

9pn + v -p„*„-0 
dt 

(22) 3p„ vn 

dt 

and 

(23) 

dt 

9p s» 

+ V • (p„ vn ® vn) = V • T„ + p„ b 

aps + v - ( P s « 8 ) = o 

+ V • (ps vs ® vs) = ps Vji. + p., 6 
8* 

with 

(24) T„ = , (-p + X'V • vn) I + 2|i 'D 

where X', (x' are the usual coefficients of Navier-Stokes stress tensor. Instead 
of classical Pascal's law for jx, we assume the new constitutive equation 

V • V[x = Xp s . 

For a mixture the Dissipation Principle (or Second Law of Thermodyna
mics for isothermal processes) has the form: 
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DISSIPATION PRINCIPLE. 

For any cyclic process 

T T 

(25) (h I Tn • Vvn dx dt + d> I ps V[x • vs dx dt > 0 

o Q 

zc?Â r̂  T îi the duration of cyclic process. 

The first integral is able to explain the dissipation effects that Hel l show, 
the second integral accounts for the superfluid behaviour. In other words, 
necessarily we have by (24) that 

j Tn (t) • Vvn (t) dx = j | X' (V • vn (0)2 + 2{i' D„2 (t) | dx > 0 

whereas by (12), (13) and (4) we obtain: 

T 

*!• 
psV[i ' vs dx dt — 0 . 

0 Ci 
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