bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Ageno, Mario:
Compartimenti funzionali nella cellula batterica. 1: Il catabolismo del glucoso
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Serie 8 80 (1986), fasc. n.6, p. 458-466, (Italian)
pdf (1.3 MB), djvu (1.36 MB).

Sunto

The concept of functional compartment of a bacterial cell is discussed throughout. On the basis of previous experimental results, three such compartments are recognized in E. coli: 1) a compartment, CA, in which the nutrient is consumed and the energy and carbon requirements of the cell are satisfied.; 2) a compartment, CM, in which the bulk of the biological materials is synthesized; 3) a compartment, CD, in which the chromosome is replicated and the cell division prepared. The performance of the compartment CA is examined and three basic points are established: 1) All along the exponential growth of the O.D., the glucose transport system is saturated and the cell mass increase rate is proportional to the mass itself. When saturation fails (at $1 \div 2$ mg/l residual glucose concentration), the nutrient inflow decreases so rapidly as to bring to a sudden stop CM. In this way, a point transition is pratically effected. 2) In a stationary saturated culture, each cell must have a residual internal pool of ATP, in absence of which the cell could not start metabolizing glucose again in a refreshing medium. On the other side, the glucose transport system cannot work when phosphoenolpyruvate is absent. In the refreshing medium, the enzyme hexokinase acts as a starter: it phosphorilates glucose, which enters the cell by diffusion, till the phosphoenolpyruvate concentration is increased and the transport system begins to work. 3) It seems very likely that the enzyme phosphofructokinase switches over the functional compartment CM. When CM is off, the phophogluconate pathway remains open, with reduced energy consumption: the compartment CD keeps on working, until the glucose from the medium and the internal pool of precursors are exhausted. In a refreshing medium, the phosphofructokinase switch is initially off, the phosphoenolpyruvate is produced via phosphogluconate and CD cannot begin to work, until a sufficient precursor pool is available.
Referenze Bibliografiche
[1] AGENO M., CLARO M. e DE BLASIO A. - Il raggiungimento della saturazione in una coltura batterica, «Rend. Acc. Naz. Lincei», 80 (5) (maggio 1986).
[2] Si veda per esempio: STANIER R.Y., ADELBERG E.A. e INGRAHAM J.L. (1976) - The Microbial World. 4th ed., Prentice Hall, Englewood Cliffs. Cap. 3.
[3] INGRAHAM J.L., MAALØE O. e NEIDHART F.C. (1983) - Growth of the Bacterial Cell, Sinauer, Sunderland Mass. Pag. 26 sgg.
[4] MANDELSTAM J., McQUILLEN K. e DAWES I. eds. (1982) - Biochemistry of Bacterial Growth, 3rd ed., Blackwell, Oxford. Pag. 147 sgg.
[5] KOSHLAND E. Jr. (1980) - Bacterial Chemotaxis as a model Behavioral System, Raven Press, New York.
[6] Si veda per esempio: LEWIN B. (1983) - Genes, Wiley, New York. Pag. 441-443.
[7] JACOB F., BRENNER S. e CUZIN F. (1963) - On the regidation of DNA replication in bacteria, «Cold Spring Harbor Quant. Biol.», 28, 239.
[8] Si veda per esempio: LEWIN B., citato in [6], pag. 143-145.
[9] Si veda per altro il recente volume: NANNINGA N. ed. (1985) - Molecular Cytology of Escherichia coli, Academic Press, London.
[10] AGENO M., SALVATORE A.M. e VALLERANI D. - Stati di crescita stazionari e transitori di una coltura batterica, «Rend. Acc. Naz. Lincei», 80 (4), (aprile 1986).
[11] AGENO M., BENINI M. e MATRICCCIANI M.A. - Fattori limitanti la crescita batterica, «Rend. Acc. Naz. Lincei», in questo fascicolo.
[12] MONOD J., WYMAN J. e CHANGEUX J.P. (1965) - On the nature of allosteric transitions: A plausible model «J. Mol. Biol.», 12, 88.
KOSHLAND D.E., NEMETHY G. e PILMER D. (1966) - Comparison of experimental binding data and theoretical models in protein containing subunits, «Biochemistry», 5, 365. Vedi anche: SAVAGEAU M.A. (1976) - Biochemical System Analysis, Addison-Wesley Reading Mass. pag. 66 sgg.
[13] MANDELSTAM J. et al., citato in [4], pag. 88 sg.
[14] GUTFREUND H. (1972) - Enzymes: Physical Principles, Wiley, London, pag. 138 sg.; WALSH C. (1979) - Enzymatic Reaction Mechanisms, Freeman, San Francisco, pag. 224-228.

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali