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Fisica matematica. — Some chain rules for certain derivatives of 

double tensors depending on other such tensors and some point variables. 

I. On the pseudo-total derivative. Nota W del Corrisp. A L D O BRESSAN. 

RIASSUNTO. — Si considerano due spazi Sjx e S?, Riemanniani e a metrica eventual
mente indefinita, riferiti a sistemi di co-ordinate 0 e 0 V ; e inoltre un doppio tensore 
T[[ associato ai punti 0 _ 1 (x) e S ^ e 0 * - 1 (y) e S # . Si pensa T '.'.'. dato da una funzione 
T ... di m altri tali doppi tensori e di variabili puntuali x (e 9^) , t e 91 e y (e 9^); poi 
si considera la funzione composta 

T;; : (*,*,y) = T;:; [5;;; (*, * , y ) , . . . , H ( * , t,y), x,t,y]. 
1 m 

Nella Parte I si scrivono due regole per eseguire la derivazione totale di questa, 

connessa con una mappa <o ( = <ot) fra S* e S^; una è a termini generalmente non cova
rianti e l'altra a termini (sempre) covarianti. Si applicano queste regole per esprimere 
il risultante P degli sforzi in un corpo (iper-)elastico classico. 

Nella Parte II si scrivono due regole analoghe per la derivata assoluta di T[[[ , e 

altre due per la derivata Lagrangiana spaziale (o trasversa) T[[\ JR di T;;; . La T "; JR 
è utile in Relatività generale o ristretta; e si applicano le due regole riferentesi ad essa 
per scrivere due espressioni di Ip appunto nel caso di un corpo (iper-)elastico relativi
stico. 

§ 1. INTRODUCTION <**> 

i • ^ ^ 
The total derivative T"! ;R of a double tensor field T;;; (x>t,y) where 

x , t , and y are point variables—see (2.8) or [3]—is used also in classical phy

sics, for instance, to treat continuous media in general co-ordinates—see e.g. 

[4]—. In general relativity, where everywhere (pseudo-) Euclidean co-ordina

tes are lacking, algorithms enabling us to use general co-ordinates are more 

important than in classical physics. However, in this theory a natural repre

sentation of the motion Jt of a continuous body fé7 depends on an arbitrary 

function t (time parameter)—see N 6, or better § 52 in [2]. Therefore in [1] 

(*) Presentata nella seduta delP8 febbraio 1986. 
(*#) The present work, performed in the sphere of activity of research group n. 3 

of the Consiglio Nazionale delle Ricerche, in 1984 and 1985, is an improved and enriched 
version of some lessons given by the author in his course of Continuum Mechanics 
(Padua 1984-85) and in his CIME course of non-stationary relativistic thermodynamics 
(Ravello Sept. 1985). 
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T.".' ;jR was replaced by the Lagrangian spatial (or transverse) derivative tV\\\ j R 

which, besides being covariant, is also independent of t (1). 
For instance, let *€' be a possibly non-homogeneous hyperelastic body 

within classical physics [special or general relativity]. Then the 1st Piola Kir-
chhoff stress tensor KaB is expressed by a constitutive function K>B whose ar
guments are other double tensors, say H.".' to H'.'.". and some point variables, 

1 m 

such as the set y of the reference co-ordinates y1, y2, y3 of the typical matter 
point P # of ^'—see (5.1), (10.1). Along the motion Jt> represented by the 
equation x = x (t >y)> we have H;;; = JI(t ,y). Then, in order to calculate 

i i 

the spatial stress divergence, we have to calculate the pseudo-total Lagrangian 
spatial derivative of a compound function, whose form is included in the form 

(l.i) T::: (*,*,y) = T::: [5::: (x9t9y),..., H::: (x,t,y),x,t,y]9 
1 m 

where x is the set of co-ordinates for the actual position of P # in the kinematic 
space being considered (in space time) (2). 

In order to calculate the derivatives Ti." (x , t ,y))R , T.'.'.' (#>*>j) lR> 
and the absolute (relativistic) derivative D T ^ (x, t ,y)IDs, chain rules are 
not strictly necessary; however, they are useful. Therefore, in this work two 
chain rules are stated for each of the three derivatives above, one with gene
rally non-convariant terms and the other with only covariant terms—see (3.5), 
(4.8), (9.1), (9.3), (9.5), and (9.7). In the relativistic case the terms of the latter 
rule are also independent of the choice of t. Furthermore a certain equality 
which in my opinion has some chances of being taken as a natural chain rule— 
see e.g. (3.6)—is shown to be generally false, unless both co-ordinate systems 
being used are locally geodesic. 

As examples, the rules for T!!'. ;R [Ti." |R] are used to calculate the density 
F of the local internal forces for c€' in classical physics [N 5] and relativity 
theory [N 10]. 

This work consists of two notes : Part 1 and Part 2. The former is devoted 
t 0 T.W ;R and classical physics whereas the latter is mainly concerned with 

DT*" /Dsy T'*' j R , and relativity theory. 

In the typical case the derivative T.W (Hi" , . . . , H"! , x , t, j>).R involves 
l m 

partial derivatives of T"! with respect to only a part of Ti!! 's arguments. There
fore it is called pseudo-total derivative. Also the pseudo-absolute derivative 

DT;;; / D p s of T;;; is considered, i.e. the absolute derivative of (x,t,y)h-

(1) In [1] and [2] I called T'.".". |R Lagrangian transverse derivative of T'.'.'. • 
However the qualification spatial seems to me now more appropriate than transverse. 

(2) The constitutive function K a B for K a B must also have a time parameter t as 
an argument, in case C" is undergoing some chemical reactions independent of jffl. 
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HT;;; (ET" , . . . , H!!; , x , t , jy). For m > 0 it generally fails to be cova-
1 m 

riant as well as T;;; ;R and Tii! |R. Therefore the stationary (or covariant par

tial) pseudo-total derivative Ti!! s*;R of T.;; is introduced [§4] and the ana

logue is done with DT" : /Dps and f::: ;R [§9]. 

These stationary derivatives enter the chain rules, all of whose terms are 

covariant. The remaining chain rules involve connectionless derivatives—see 

(3.4;, (48.), and (8, 1-2). 

§ 2. DOUBLE TENSORS AND TOTAL DERIVATIVES 

Let S^ and S* be Riemannian spaces of respective dimensions y. and v. 
Their metric tensors ga$ and a^M may fail to be defined > 0 (strictly positive) 
or < 0 (strictly negative), and may also be everywhere Euclidean or everywhere 
pseudo-Euclidean. 

Let {a(3,y} and {a p(3} = {a(3 , y}£Yp, where (gY?) = (£YP)-\ be the Chri-
stoffel symbols for S^ and let {A B , C} and {^B} be their analogues for S*. 

Consider the points ^ e S ^ and P # e S*; and let <j> [(j>#] be a (regular) 
frame, or co-ordinate system, for S^ [S*], i.e. a bijection of S^ [Sjf ] onto an open 
subset of R^ [Rv] <3\ e.g. 

(2.1) (** , . . . , &)=$ (*) = (tf {*),. . . , ̂  {*)) (V^e S,) ; 

( y , . . . ? r ) = * # ( P # ) ( v p # G S f ) . 

Frame $ [<j>#] can also be denoted by (x) [(y)]. Now consider the set of 
[ia+c. vb+d scalars 

(2.2) { T . 1 . . . , ^ 1 — 6 R l . . . R / ^ ^ } = T ( c j > , ^ ) , 

' i 
where Greek [Latin] indices run over a set of [L [V] elements—e.g. from 1 to 
[x [v]. Let it depend on <j> and (j># in such a way that, whenever also Ç [$#] is 
a frame for S^ [S*], we have 

n 3) T P i - B i - = T " i - Sx... ^ 8 ^ 1 8 j ^ ^ i 

where (i) {T p v- B i - } = T(<|>, <j>*) , (ii) &&/d& are the partial derivatives 

of the function ^3 = cj>3 [§~l (x1, . . . , a:*1)] evaluated at the point § (&) of R^, 
and (iii) the analogues hold for dxp jdxa, dy&/dyA, and 9j7B/6ys. Then T is 
said to be a (double) tensor of covariant order (a , c) and controvariant order 

(3) If one likes to consider an atlas for e.g. S^, let § be a bijection of an open sub
set of Spi that includes <?, into an open subset of 9^. 
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(b , d), attached to the point 3 of S^ through its first a + b indices, and to the 
point P* of S* through its last c + d indices. The scalars T'[ = T ° i - j U » . — 

see (2.2)—are called the components of T in frames cj> and cj>#. 

Now regard the above double tensor T as a function T whose arguments 
are m ( > 0) other double tensors H to H also attached to S and P # , the point 

1 m 

variables ê and P # , and (possibly) a real parameter t. Let all arguments of T 
range over some open subsets of some suitable spaces. 

Let us remark that the above parameter t is used throughout Part 1 mainly 
for purposes reached in Part 2. Readers interested in (pseudo-) total deriva
tives but not in (pseudo-) absolute or Lagrangian spatial derivatives, can cross 
out t everywhere in § § 2-4. 

Field T;;; is represented in the above frames cj> and $* by the component 
functions 

(2-4) T a ^ ; - A l
B r = f ::: ( H ^ L ; M - , . . . , U\\\ ,x,t,y). 

1 m 

Let us now define the pseudo-covariant partial derivatives (of T) in S^ and 
S*, by 

(2.5) f:::/p = ^ - s*„ T::: , f:;:/R = ^ _ s*,R T::: , 

where (the linear operators) S£,p and S£,R are given by 

[Q.f nr«31...Bi... — r o \ q ^ i . . . B\... . rp t \ 'T'op B ^ . . 
J D r ' P 1 a i . . .A i . . . \ S ai / la«2... A3... ^ • • • \SXaS laxfmm Ai!.. • • • 

I S / « T^1— B l — i S \ T P l - " B 3 - " 4 - /Bf i r r ip , . . . SBa . . . 
I or,R i a l . . . A j _ — l R A l ) i a i _ SA2 -|- . . . tRSj- i a i Kl* . . . . 

The symbols thus introduced are justified by simple stationarity proper
ties—see below (4.5). 

For m = 0 each of the scalar systems (2.5) (which depend on cj> and §*) 
turns out to be a double tensor attached to ^ e S ^ and P # e S*. Hence one 
speaks of covariant partial derivatives of the double tensor field T '" — T ' " 
(x, t ,y) (regarded, if preferred, as a function of x and y). 

Consider a C^-homeomorphism «f = «f (P#) of S* into S^. possibly de

pending on t {S = êt) and represented, in frames § and <j>#, by 

(2.7) x? = x* (t, y) — or precisely x? = & (y) = #>(*, y) (3 = S%, *P e C<1>). 

For any m > 0, the pseudo-total derivative of the field T;;.' — see (2.4) —• 
connected with this map, is defined by 

(2.8) T p r - f V V ; R = T : : : / p 4 + f:::/R ( ^ = 3 ^ / 9 ^ ) -
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For m = 0, it is also a double tensor attached to 3 and P# , but dependent 
on only P* (and t). Some of its properties can be found in [3]—see also [2], 
p. 234. 

§ 3. COMPOUND FUNCTIONS WHOSE ARGUMENTS INVOLVE DOUBLE TENSORS AND 

POINT VARIABLES. A CHAIN RULE FOR THE TOTAL DERIVATIVE OF THEM, WITH 

G E N E R A L L Y N O N C O V A R I A N T T E R M S 

Besides field (2.4), consider the m double tensor fields 

(3-1) H£;;M--- = H;;; (x,t,y) (i = 1 , . . . , « ) ; 

and remembering (2.7), let us set 

(3.2) T P i - ? i - = T : : : ( * , ^ J / ) = = T : : : [H::: (x,t,y),..., 
a i - - - A i " i 

H::: (x,t,y),x9t,y\. 
m 

Then 

(3.3) T::: ;;R = £ ^ H::: ;;R + T::: ;;R 
,=! oli... i 

i 

where, for an arbitrary choice of the field Ti" (m > 0), its connectionless pseu
do-total derivative T." ;;R is defined by—see (2.8)2— 

hence 

(3.4') T::: ; ; R = T : : : ; R for^, = O = « IB ,C( / ,P = ^ . / R = ^ ) . 

Expression (3.4) of T;;; ;;R can be obtained from the one of T!!'. *,R—see 
(2.8) and (2.5-6)—by crossing out the terms in the connections {Jp} and {^}*, 
which justifies the name for T"! ;;R. An analogous use of a redoubled deriva
tion sign will be made in Part 2—see (8.2). 

By (2.8), (2.5-6), and (3.3) we easily deduce the chain rule 

(3.5) T::: (*, t, yy,R = £ -=5 -̂ H::: ;;R + T::: ;R 
,-=I ori... i 

i 

for compound functions such as (3.2). For m > 0 its last two terms are generally 
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non-covariant. In fact T.\" (x,tyy);R and ÔT/8H;.'; are covariant (z = l , 
i 

. . . , m), while H"; ;;R generally fails to be so. Let us remark explicitly that 
i 

therefore T.\\' ;R generally fails to he covariant when m > 0. 

By (3.5) the inequality 

^ m ffT'" L-J 

(3.6) T: : : (* ,t , y ) ; R ^ £ ^ r H: : : * + T: : : ;R - s e e ( 3 . 2 ) -
;:=i 8H... ,-

obviously holds in the typical case. I note this because it seems to me relatively 
natural to assert the equality of the two sides of (3.6), in that the noncovariant 
character of T'.'.'. ;R may be overlooked. This equality is acceptable after the 
replacement of its last term by a suitable co-variant one—see (4.8). 

§ 4. STATIONARY PSEUDO-TOTAL DERIVATIVES FOR FUNCTIONS SUCH AS (2.4). A 
CHAIN RULE FOR THE PRECEDING COMPOUNDS FUNCTIONS, ALL OF WHOSE TERMS 

ARE COVARIANT 

Let us first assume that spaces S^ and S* are (pseudo-) Euclidean, so that 

some choices of <j> and c|)# render (3.4')2 3 true everywhere. Then, if the com

ponent functions H." to H!" are constant, they represent constant double 
1 m 

tensor fields. Thus the tensors T;.\' and H'.'.'. to H.'!." in (2.4) can be regarded 
1 m 

as attached simply to S^ and S*. Hence for H to H fixed, T".' can be regarded 
1 m 

as a double tensor of S^ and Sf depending on x and y (and t). For the resulting 

field T.'.'.' (x ,y , t) we have 

(4.1) T: : : ;R = T : : : ( # , t9yyyR for ^a3)Y = o = a | B C . 

Now let S^ and S* be arbitrary Riemannian spaces, so that constant double 

tensor fields of many orders fail to exist in them. Therefore (4.1) can be con

sidered only locally, by choosing H.W locally stationary: 
* 

H.\\' /p = 0 = H;;; /R , or at least H"! ;R = 0 (i — 1 , . . . , m) . 
i i i 

With a view to writing the chain rule hinted at in the title, for arbitrary 
choices of (j) and <j>#, let us continue the considerations about (4.1) as follows. 
Fix arbitrary local values for the arguments Hi" to H;;; of function (24), 

1 m 

attached to P* = §*-1 (y) e S* and g = S (P*) = ^ [x (t, y) ] e S„ —see 
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(2 7)—. Furthermore consider arbitrary tensor fields H.W {xr ,t,y') attached 
i 

to y' and x (t, y') (i = 1 , . . . , m), that at y (and x (t, y)) (i) assume the locally 
fixed values and (ii) are pseudo-totally stationary: 

(4.2) H::: ( * , * , J O = H::: , H ( * , * , J , ) ; R = O (* = i , . . . , m ) . 

Such tensor fields certainly exist, even with oH".' Idx^~0= oH!" jdt. 
i i 

In fact 

(4.3) H: : : ; ; R = H:: : ;R + s * * H : : : for H: : : = H:: : ,[x(t,y),t,y] 

where 

(4.4) s*;R H::: == (s*p, H::: ) *R + s?,R H::: —see (2.6). 

Therefore (4.2)2 is equivalent to 

(4.5) H::: ; ; R = S* ;RH::: (H::: ; ; R = H::: ,RforH::: , p = o ) . 
i i i i i 

Thus St;& H;;; is the connectionless pseudo-total derivative of a stationary 
field of local value H!!! . Incidentally $t,p H"! [S*,R H;;; ] is its analogue 
for the partial pseudo-covariant derivative in S^ [S*]. 

Remembering (3.2) and (4.2) one can now define the stationary, or covariant 

partial, pseudo-total derivative T i" S£;R of T'.'.'. (connected with the map ê)\ 

(4 .6) . T : : : S , R = D T : : : ( * , < J ) ; R for H: : : = H : : : (i=i,...,m). 
i i 

Then (4.5) and (3.5) yield the explicit expression 

(4.7) T:::S/ ,R(H::: , . . . , H : : : ,x,t,y) = %~- s*;RH;:: + T::: ; R . 
1 m i=i o r i . . . i 

i 

By (4.7) and (4.3), (3.5) yields the chain rule 

(4.8) T::: (*,*,y);R = ;saH,..vM- H ^ : " ; R +T:;: sm 

for compound functions such as (3.2), all of whose terms are covariant. 
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§ 5. T H E STRESS DIVERGENCE FOR A HYPERELASTIC BODY 

AND THE ABOVE CHAIN RULES 

Identify S2 and Sf with a same inertial space. Furthermore assume that 
(i) # ' is a hyperelastic—i.e. a purely mechanical elastic-body, (ii) C # is a re
ference configuration for it, regarded as belonging to S*, (iii) any motion Ji, 
possible for fé", is represented by an equation such as (2.7)x with xp e C(2), so 
that fé7' can be thought of as a set of material points, and (iv) P # is a typical one 
among these points. 

Then (using the above frames (j> and cj>#), at any instant t, the first Piola-
Kirchhoff stress tensor KaB at P # in Ji, is a double tensor attached to P # and 

S (P#) through the indices a and B respectively; furthermore it is given by a 
constitutive equation of the form (4) 

(5.1) K"B = K«B (y , xl , gX[L , cj>*) where y = {y*, f , / ) = <j>* (P*) . 

Along Ji (5.1) induces a function KaB = KaB (t, y) in the well known way. 

The dynamic equations for fé involve the resultant ]> = — KpB ;B of the 
internal forces acting on fé at P # , per unit reference volume. By rules (3.5) 
and (4.8) with YL^—x£(t,y) and HA(JL = £5^ (%) Ia has the expressions 

l 2 

8KaB 8K B 

(5.2) I- = - K"B ;B = _ — *.,LB -^— ^ 4 _ K-B,B (*£=^£) 

8KaB 

(5.3) I a = _ ^ ;LB _ K«B
 S,;B - s e e (4.6)- (** ;L = *£) 

o xh 

respectively, where by (4.7) and (4.4) 

fìKaB 
(5.4) K«BS(;B = K"B iB-^^r <&> < *B - {&}* *§) • 

Incidentally, since S3 = S j , one can choose (j)=cj)#. However also in 
this case { } and { } # are generally unrelated, because they are calculated at 
different points. 

(4) K a B behaves in t h e obvious way u n d e r changes of 0 *, and it is de te rmined 
by t h e function induced by it for any part icular choice 0 # of 0 # and for gail = 8a{Xi 

I n more detail , let y = y (y) b e 0 * o 0 * _ 1 , let (#f) be any matr ix for which gX[i = 8Y8 x* 
xl, and set (a£) = ( â^T 1 . T h e n (10.1) holds if and only if 

K«B = ^ ( % B / 2 y S ) K P S ( y , 5 | , 5 X ^ , 0 *) wi th â ^ = aj£ *£ dyA!dy* . 
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Let us add that in accordance with inequality (3.6), by (5.3-4) the equality 

8KaB 

(5.5) I« = - 9 — X - , L B ~ K « B ; B 

is generally false. It is true and coincides with both (5.2) and (5.3) in locally 

geodesic co-ordinates (ga^ x = 0 = a^g Q). 
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