Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali Rendiconti

Antonio Lanteri, Marino Palleschi

On the ampleness of $K_{X} \otimes L^{n}$ for a polarized threefold (X, L)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 78 (1985), n.5, p. 213-217.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1985_8_78_5_213_0

L'utilizzo e la stampa di questo documento digitale è eonsentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria algebrica. - On the ampleness of $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ for a polarized threefold (X,L) ${ }^{(*)}$. Nota di Antonio Lanteri e Marino Palleschi ${ }^{(* *)}$, presentata ${ }^{(* * *)}$ dal Socio E. Marchionna.

Abstract

Riassunto. - Siano X una varietà algebrica proiettiva complessa non singolare tridimensionale, L un fibrato lineare ampio su X , e $n \geq 2$ un intero. Si prova che, a meno di contrarre un numero finito di (-1)-piani di X , il fibrato $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ è ampio ad eccezione di alcuni casi esplicitamente descritti. Come applicazione si dimostra l'ampiezza del divisore di ramificazione di un qualunque rivestimento di \mathbf{P}^{3} o della quadrica liscia di \mathbf{P}^{4}.

1. Introduction

The subject of this paper is the ampleness of $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ on a polatized threefold, i.e. a pair (X, L) where X is a complex connected projective algebraic threefold and L an ample line bundle on X . We prove that, up to contracting a finite number of (-1)-planes of $\mathrm{X}, \mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ is ample if $n \geq 2$, apart from a few cases explicitly described (Theorem 2.1). This fact together with known results on surfaces [5] implies that $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}$ is ample for any polarized manifold $(\mathrm{X}, \mathrm{L}) \neq\left(\mathbf{P}^{k}, \mathscr{O}_{\mathbf{P}^{k}}(1)\right)$ of dimension $k \leq 3$. If the same were true in every dimension, it would extend Ein's result on the ampleness of the ramification divisor of a branched covering of \mathbf{P}^{k} [2]. Partial results are provided by Propositions 2.4, 2.5. On the other hand Ein's result can be generalized in a different perspective. Actually, as an application of Theorem 2.1, we show the ampleness of the ramification divisor of any branched covering of a quadric threefold (Theorem 3.2).

2.

Let (X, L) be a polarized threefold. As usual we shall not distinguish between line bundles and invertible sheaves. We also write L^{n} for $\mathrm{L} \otimes^{n}$. Following Sommese [6] we shall call a polarized threefold ($\mathrm{X}^{\prime}, \mathrm{L}^{\prime}$) a reduction of (X, L) if there is a surjective morphism $\pi: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ such that i) π is the blowup of a finite set $\mathrm{F} \subset \mathrm{X}^{\prime}$ and ii) $\pi^{*} \mathrm{~L}^{\prime}=\mathrm{L} \otimes\left[\pi^{-1}(\mathrm{~F})\right]$. K_{X} will stand for the canonical bundle of X .
(*) Partially supported by M.P.I. of the Italian Government.
(**) Dipartimento di Matematica «F. Enriques» dell’Università, Via C. Saldini, 50, I-20133 Milano.
(***) Nella seduta del 18 maggio 1985.
(2.1) Theorem. Let (X , L) be a polarized threefold. The line bundle $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ is ample for $n \geq 2$, apart from the following cases:

$$
\begin{aligned}
n=4 & \text { and }(\mathrm{X}, \mathrm{~L})=\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1)\right) ; \\
n=3 & \text { and either }(\mathrm{X}, \mathrm{~L})=\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{F}^{3}}(1)\right), \quad(\mathrm{X}, \mathrm{~L})=\left(\mathrm{Q}, \mathcal{O}_{\mathrm{Q}}(1)\right), \mathrm{Q} \\
& \text { being a smooth hyperquadric of } \mathbf{P}^{4}, \text { or } \mathrm{X} \text { is a } \mathbf{P}^{2} \text {-bundle and } \mathrm{L}_{\mid \mathrm{F}}= \\
& =\mathcal{O}_{\mathbf{P}^{2}}(1) \text { for any fibre } \mathrm{F} \text { of } \mathrm{X} ;
\end{aligned}
$$

$n=2$ and sither
(a) X is a \mathbf{P}^{1}-bundle and $\mathrm{L}_{\mid \mathrm{F}}=\mathcal{O}_{\mathbf{P}^{1}}(1)$,
(b) X is a \mathbf{P}^{2}-bundle and $\mathrm{L}_{\mid \mathrm{F}}=\mathcal{O}_{\mathrm{F}^{2}}(e), e=1$ or 2 ,
(c) X is a quadric bundle and $\mathrm{L}_{\mid \mathrm{F}}=\mathcal{O}_{\mathrm{F}}(1)$, where, in each case, F is a fibre of X ,
(d) X is a Fano threefold of index $r \geq 2, \operatorname{Pic}(\mathrm{X}) \simeq \mathbf{Z}[l]$ and $\mathrm{L}=l^{m}, m<r$, or there is a reduction $\left(\mathrm{X}^{\prime}, \mathrm{L}^{\prime}\right)$ of (X, L) where $\mathrm{K}_{\mathrm{X}}, \otimes \mathrm{L}^{\prime 2}$ is ample.

Proof. Let us consider the line bundle $\mathrm{N}=\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n-1}$. First assume that N^{s} is spanned by its global sections for some $s>0$. So by tensoring N^{s} with the ample line bundle L^{s}, we get the ampleness of $\mathrm{N} \otimes \mathrm{L}=\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$. Now assume that for no $s>0 \mathrm{~N}^{s}$ is spanned by its global sections and let $\mathrm{M}=$ $=\mathrm{N} \otimes \mathrm{K}_{\mathrm{X}}^{-1}=\mathrm{L}^{n-1}$. Then since $\mathrm{K}_{\mathrm{X}}^{n} \otimes \mathrm{M}^{n}$ is spanned for no $n>0$, it follows from [1, Thm. 2.2] that either (X, M) is one of the pairs listed in $(a)-(d)$ or it admits a reduction $\left(\mathrm{X}^{\prime}, \mathrm{M}^{\prime}\right)$ such that some power of $\mathrm{K}_{\mathrm{X}}, \otimes \mathrm{M}^{\prime}$ is spanned by its global sections. In the latter case, let $\pi: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ be the reduction morphism and let $\mathrm{E}_{1}, \ldots, \mathrm{E}_{t}$ be the (-1)-planes contracted by π. Since $\pi^{*} \mathrm{M}^{\prime}=$ $=\mathrm{M} \otimes\left[\mathrm{E}_{1}\right] \otimes \ldots \otimes\left[\mathrm{E}_{t}\right]$, by restriction to E_{i}, we get

$$
\mathrm{M}_{\mid \mathrm{E}_{i}}=\left[\mathrm{E}_{i}\right]^{-1}{ }_{{ }^{1}}=\mathcal{O}_{\mathbf{F}^{2}}(1) .
$$

On the other hand $\mathrm{M}=\mathrm{L}^{n-1}$ and therefore this case can occur only when $n=2$. It only remains to see which of the exceptions $(a)-(d)$ are allowable for the pair (X, M) when $n \geq 3$. Since $\mathrm{M}=\mathrm{L}^{n-1}$, cases (a) and (c) cannot occur, whereas case (b) happens if and only if $\mathrm{M}_{\mathrm{F}}=\mathcal{O}_{\mathrm{F}^{2}}$ (2), which means that $n=3$ and (X, L) is as in (b) with $e=1$. Finally assume that (X, M) is as in (d). Then we have

$$
\mathrm{L}^{n-1}=\mathrm{M}=l^{m}, m<r,
$$

where l is the ample generator of $\operatorname{Pic}(\mathrm{X})$ and r is the index of the Fano threefold X . Since $r \leq 4$ and $n \geq 3$ we have the following possibilities: $n=4=r$, in which case $\mathrm{X} \simeq \mathbf{P}^{3}$ and $\mathrm{L}=l, n=3 \leq r \leq 4$, in which case $\mathrm{L}=l$ and X is either \mathbf{P}^{3} or a quadric hypersurface. q. e. d.

By summing up some known results in dimension less than 3, we get
(2.2) Corollary. Let (X, L) be a polarized manifold of dimension $k \leq 3$. If $(\mathrm{X}, \mathrm{L}) \neq\left(\mathbf{P}^{k}, \mathcal{O}_{\mathbf{P}^{k}}(1)\right)$, then $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{n}$ is ample for any $n \geq k+1$.

For $k=1$ this is a trivial fact; for $k=2$ see [5].
This suggests the following
(2.3) Question. Is $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}$ ample for any dimension $k \geq 1$, apart from the obvious exception $\left(\mathbf{P}^{k}, \mathcal{O}_{\mathbf{p}^{k}}(1)\right)$?

As is known the answer is affirmative when L is very ample. This could be deduced indirectly from the finiteness of the Gauss map [3] and Lemma 4 of [2]; but, what's more, using the standard technique of separating points and tangent vectors, one can directly prove, by induction.
(2.4) Proposition. If L is very ample, then $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}$ is very ample unless $(\mathrm{X}, \mathrm{L}) \simeq\left(\mathbf{P}^{k}, \mathcal{O}_{\mathbf{P}^{k}}(1)\right)$.

In a very special case (2.3) can be answered affirmatively.
(2.5) Proposition. Assume that Pic $(\mathrm{X}) \simeq \mathbf{Z}$; then $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}$ is ample unless $(\mathrm{X}, \mathrm{L}) \simeq\left(\mathbf{P}^{k}, \mathcal{O}_{\mathrm{P}^{k}}(1)\right)$.

Proof. Let l be the ample generator of $\operatorname{Pic}(\mathrm{X})$. Then $\mathrm{K}_{\mathrm{X}}=l^{-r}, r \in \mathbf{Z}$. Of course there is nothing to prove when $r \leq 0$ and so we can assume $r>0$. This means that X is a Fano manifold of index r. Let $\mathrm{L}=l^{n}, n>0$ and assume that $\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}=l^{n(k+1)-r}$ is not ample. This yields $n(k+1)-$ $-r \leq 0$. If equality occurs, then we get $(\mathrm{X}, \mathrm{L}) \simeq\left(\mathbf{P}^{k}, \mathcal{O}_{\mathbf{P}^{k}}(1)\right)$, by [4], Th. 2.1. So it is enough to prove that it cannot be $r>n(k+1)$. Actually we prove that $r \leq k+1$. To see this, put $\chi(m)=\chi\left(l^{m}\right)$. By the Kodaira vanishing theorem we know that $h^{i}\left(l^{m}\right)=0$ if $m<0$ and $i=0, \ldots, k-1$. So, by Serre's duality, $\chi(m)=(-)^{k} h^{k}\left(l^{m}\right)=(-)^{k} h^{0}\left(l^{-(l+m)}\right)$ if $m<0$. Therefore

$$
\begin{equation*}
\chi(m)=0 \quad \text { for } \quad-r \leq m<0 . \tag{2.5,1}
\end{equation*}
$$

On the other hand, since X is Fano, $\chi(0)=\chi\left(\mathcal{O}_{\mathrm{X}}\right)=h^{0}\left(\mathcal{O}_{\mathrm{X}}\right)=1$ by the Kodaira vanishing theorem again. Hence $\chi(m)$, a polynomial of degree k which does not vanish everywhere, has at most $k+1$ distinct roots. It thus follows from (2.5.1) that $r \leq k+1$. q. e. d.

3.

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a finite morphism of projective manifolds of dimension k. The ramification formula gives $\mathrm{R} \in\left|\mathrm{K}_{\mathrm{X}} \otimes f^{*} \mathrm{~K}_{\mathrm{Y}}^{-1}\right|$, where R stands for the ramification divisor of f on X . Now assume that $\mathrm{K}_{\mathrm{Y}}^{-1}=\mathrm{N}^{t}$, with N ample and $t>0$ (this is equivalent to saying that Y is a Fano manifold whose index
r is divided by t. Since f is a finite morphism, the line bundle $\mathrm{L}=f^{*} \mathrm{~N}$ is ample and

$$
\begin{equation*}
\mathrm{R} \in\left|\mathrm{~K}_{\mathrm{X}} \otimes \mathrm{~L}^{t}\right|, \mathrm{L} \text { ample. } \tag{3.0}
\end{equation*}
$$

Hence (2.1) applies to studying the ampleness of the ramification divisor of branched coverings of Fano manifolds.
(3.1) Example. Take $\mathrm{Y}=\mathbf{P}^{k}$; so (3.0) becomes $\mathrm{R} \in\left|\mathrm{K}_{\mathrm{X}} \otimes \mathrm{L}^{k+1}\right|$. By Corollary 2.2, if $k \leq 3$ we get the ampleness of R with the trivial exception $\operatorname{deg} f=1$. If the answer to Question 2.3 were affirmative, then we could obtain the ampleness of R for any k. Actually the ampleness of the ramification divisor of a branched covering of \mathbf{P}^{k} was proved by Ein [2] answering a question asked by Lazarsfeld. This fact might be a good reason to hope that the answer to (2.3) is yes.

At least when $k \leq 3$, the above results allow us to study the ampleness of R when \mathbf{P}^{k} (i.e. the Fano manifold of index $r=k+1$) is replaced with a quadric (i.e. a Fano manifold of index $r=k$).
(3.2) Theorem. Let $f: \mathrm{X} \rightarrow \mathrm{Q}$ be a finite morphism from a manifold X to a smooth quadric Q of dimension $k \leq 3$. The ramification divisar R is ample unless either
i) f is an isomorphism, or
ii) $k=2, \mathrm{X}$ is a $\mathbf{P}^{1}-$ bundle, $f^{*} \mathcal{O}_{\mathrm{Q}}(1)_{\mid \mathrm{F}}=\mathcal{O}_{\mathbf{P}^{1}}$ (1) for any fibre F of X and R is a sum of fibres.

Proof. Using the above notation, $\mathrm{R} \in\left|\mathrm{K}_{\mathrm{X}} \otimes f^{*} \mathcal{O}_{\mathrm{Q}}(1)^{k}\right|$, since $\mathrm{K}_{\mathrm{Q}}=$ $=\mathcal{O}_{\mathrm{Q}}(-k)$. Then R is ample unless either
(α) $(\mathrm{X}, \mathrm{L}) \simeq\left(\mathbf{P}^{k}, \mathcal{O}_{\mathbf{P}^{k}}(1)\right)$,
(β) $(\mathrm{X}, \mathrm{L}) \simeq\left(\mathrm{Q}, \mathcal{O}_{\mathrm{Q}}(1)\right)$, or
(γ) X is a \mathbf{P}^{k-1}-bundle and $\mathrm{L}_{\mid \mathrm{F}}=\mathcal{O}_{\mathbf{P}^{k-1}}$ (1) for any fibre F of X .
This follows from Theorem 2.1 for $k=3$ and from [5], Th. 2.5, in case $k=2$.

Let $\mathrm{H} \in\left|\mathscr{O}_{\mathrm{Q}}(1)\right|$; then

$$
\left(f^{*} \dot{\mathrm{H}}\right)^{k}=(\operatorname{deg} f)(\dot{\mathrm{H}})^{k}=2 \operatorname{deg} f .
$$

But $\left(f^{*} \dot{\mathrm{H}}\right)^{k}=1$ or 2 according to whether we are in case (α) or (β). Therefore case (α) cannot occur, whereas $\operatorname{deg} f=1$ in case (β). In case (γ) let $g=$ $=f_{\mathrm{F}} ;$ since $g^{*} \mathcal{O}_{\mathrm{Q}}(1)=\mathcal{O}_{\mathbf{P}^{k-1}}(1), g$ embeds $\mathrm{F}\left(=\mathbf{P}^{k-1}\right)$ into Q as a linear space of dimension $k-1$. As \mathbf{Q} is assumed to be smooth, this can only occur when $k=2$. In this case $\mathrm{K}_{\mathrm{X} \mid \mathrm{F}}=\mathcal{O}_{\mathbf{P}^{1}}(-2)$, since X is a \mathbf{P}^{1}-bundle, and then $(\mathrm{K} \otimes$ $\left.\otimes L^{2}\right)_{\mid F}=0$. Therefore R is a sum of fibres, since it belongs to $\left|K_{X} \otimes L^{2}\right|$.

Added in proof. Question (2.3) has recently been given a positive answer by T. Fujita and P. Ionescu, independently.

References

[1] M. Beltrametti e M. Palleschi - On threefolds with low sectional genus. to appear in Nagoya Math. J.
[2] L. Ein (1982) - The ramification divisor for branched coverings of \mathbf{P}_{k}^{n}. «Math. Ann.», 261, 483-485.
[3] W. Fulton e R. Lazarsfeld (1981) - Connectivity and its applications in Algebraic Geometry. In «Lecture Notes in Math.», 862, 26-92, Berlin-Heidelberg-New York, Springer.
[4] T. Fujita (1975) - On the structure of polarized varieties with Δ-genera zero. «J. Fac. Sci. Univ. Tokyo», Sect. I-A Math., 22, 103-115.
[5] A. Lanteri e M. Palleschi (1984) - About the adjunction process for polarized algebraic surfaces. «J. Reine Angew. Math.», 352, 15-23.
[6] A.J. Sommese (1982) - Ample divisors on 3-folds. In «Lecture Notes in Math.», 947, 229-240. Berlin-Heidelberg-New York, Springer.

