ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ENRICO CASADIO TARABUSI

Analyticity of the Spectral Multi-Function in Topological Algebras

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **78** (1985), n.1-2, p. 13–18. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_78_1-2_13_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1985.

Geometria. — Analyticity of the Spectral Multi-Function in Topological Algebras. Nota di ENRICO CASADIO TARABUSI (*), presentata (**) dal Corrisp. E. VESENTINI.

RIASSUNTO. — Se $f: \Omega \to \mathscr{U}$ è un'applicazione olomorfa di un dominio di **C** in un'algebra topologica che gode di certe proprietà, si dimostra che la multifunzione «spettro» $\sigma_{\circ}f: \Omega \to 2^{\mathbb{C}}$ è analitica secondo Oka.

1. INTRODUCTION

Let Ω be a domain in **C**, **B** a complex Banach space, $\mathscr{L}(\mathbf{B})$ the complex Banach algebra of continuous endomorphisms of **B**, 2^{c} the family of subsets of **C**, $\sigma : \mathscr{L}(\mathbf{B}) \to 2^{\mathbb{C}}$ the multifunction "spectrum" (mapping $x \in \mathscr{L}(\mathbf{B})$ into its spectrum $\sigma(x)$). According to [7, p. 371, Corollary 3.3.], if $f: \Omega \to \mathscr{L}(\mathbf{B})$ is a holomorphic map, then the multifunction $\sigma \circ f : \Omega \to 2^{\mathbb{C}}$ is analytic in the sense of Oka (i.e. $\sigma \circ f$ is upper semi-continuous and each connected component of the open set $D = \{(\lambda, z) \in \Omega \times \mathbb{C} \mid z \notin \sigma(f(\lambda))\}$ in \mathbb{C}^2 is a domain of holomorphy). A partial converse to the above statement is also proved in the same paper [p. 365, Theorem IV.]: given an analytic multifunction $\sigma: \Omega \to 2^{\mathbb{C}}$ (taking its values among the non-empty compact subsets of C), there exist a complex Hilbert space \mathscr{H} and a holomorphic map $f: \Omega \to \mathscr{L}(\mathscr{H})$ such that $s \equiv \sigma \circ f$ on Ω , provided Ω is bounded and s is uniformly bounded on Ω (i.e. sup max $|z| < \infty$). We shall show here that the Oka-analyticity of the spec- $\lambda \in \Omega$ $z \in s(\lambda)$ trum is a property of a class of topological algebras which is larger than that of Banach algebras.

2. Semi-continuity of the spectrum

We shall give first a characterization of complex topological algebras whose spectrum is upper semi-continuous, thus establishing the reverse implication of [11, p. 63, Lemma 5.2.]. Let us recall some definitions.

DEFINITION 1. Let \mathscr{U} be a complex topological algebra. A multifunction $\Sigma : \mathscr{U} \to 2^{\mathbb{C}}$ is said to be upper semi-continuos (u.s.c.) if, for any $x \in \mathscr{U}$ and any neighbourhood A of $\Sigma(x)$ in C there exists $U \in N_0$ (N_0 being the family of 0-neighbourhoods in \mathscr{U}) such that $y \in \mathscr{U}$ implies $\Sigma(x + y) \subseteq A$.

- (*) Scuola Normale Superiore di Pisa.
- (**) Nella seduta del 24 novembre 1984.

Let \mathscr{U} be a complex algebra. Set $x \circ y = x + y - x \cdot y$, for any $x, y \in \mathscr{U}$: an element $x \in \mathscr{U}$ is quasi-regular (q, r.) if a (unique) $x' \in \mathscr{U}$ exists so that $x \circ x' = x' \circ x = 0$ (x' is the quasi-inverse of x); and \mathscr{U}' is the set of q.r. elements of \mathscr{U} . If \mathscr{U} has an identity element e (i.e. \mathscr{U} is unital), then $e - x \circ y = (e - x) \cdot (e - y)$ for every $x, y \in \mathscr{U}$: thus x is q.r. if and only if e - x is invertible, in which case $(e - x)^{-1} = e - x'$. So, if \mathscr{U}^{-1} is the set of invertible elements in \mathscr{U} , then $\mathscr{U}^{-1} = e - \mathscr{U}'$.

The spectrum $\sigma_{\mathscr{U}}(x) = \sigma(x)$ in \mathscr{U} of an element $x \in \mathscr{U}$ is thus defined: $\sigma(x) \setminus \{0\} = \{z \in \mathbf{C}^* | \frac{x}{z} \notin \mathscr{U}'\};$ and $0 \in \sigma(x)$ if and only if \mathscr{U} is unital and $x \in \mathscr{U}^{-1}$. If \mathscr{U} is unital we have $\sigma(x) = \{z \in \mathbf{C} \mid ze - x \in \mathscr{U}^{-1}\}.$

DEFINITION 2. A complex topological algebra \mathscr{U} is said to be Q if \mathscr{U}' (or, equivalently, \mathscr{U}^{-1} if \mathscr{U} is unital) is open in \mathscr{U} .

If \mathscr{U} is a complex algebra without identity element, let $\check{\mathscr{U}}$ be the complex algebra $\mathscr{U} \oplus \mathbb{C}$ where $(x, \mu).(y, \nu) = (x.y + \nu x + \mu y, \mu \nu)$, for any (x, μ) , $(y, \nu) \in \check{\mathscr{U}}$. Thus $\check{\mathscr{U}}$ is unital, (0,1) being its identity element; and \mathscr{U} is identified with its two-sided regular maximal ideal $\mathscr{U} \times \{0\}$. Moreover $\check{\mathscr{U}}' = \left\{(x, \mu) \in \check{\mathscr{U}} \mid \mu \neq 1, \frac{x}{1-\mu} \in \mathscr{U}'\right\}$ (in particular, $\check{\mathscr{U}} \cap \mathscr{U} = \mathscr{U}'$): if $(x, \mu) \in \check{\mathscr{U}}$ $\check{\mathscr{U}}'$, then $(x, \mu)' = \left(\frac{1}{1-\mu}\left(\frac{x}{1-\mu}\right)', \frac{\mu}{\mu-1}\right)$ (in particular, (x, 0)' = (x', 0) for every $x \in \mathscr{U}'$). So $\sigma_{\check{\mathscr{U}}}\left((x, \mu)\right) = \sigma_{\mathscr{U}}(x) + \mu$ for every $(x, \mu) \in \check{\mathscr{U}}$ (in particular, $\sigma_{\check{\mathscr{U}}}(x, 0) = \sigma_{\mathscr{U}}(x)$ for every $x \in \mathscr{U}$). It is thus evident that, if \mathscr{U} is also a topological algebra $(\check{\mathscr{U}}$ has then the product topology, and \mathscr{U} is closed in $\check{\mathscr{U}}$, $\mathscr{U} \to 2^{\mathbb{C}}$ is u.s.c. if and only if $\check{\mathscr{U}}$ is; and the multifunction spectrum $\sigma_{\mathscr{U}} : \mathscr{U} \to 2^{\mathbb{C}}$ is continuous if and only if $(x, \mu) \mapsto (x, \mu)' : \check{\mathscr{U}} \to \check{\mathscr{U}}$ is: this fact will be used in Theorem 6. below. Therefore we shall only consider *unital* algebras in our proofs.

PROPOSITION 3. Let \mathcal{U} be a complex topological algebra. Then \mathcal{U} is Q if and only if the multifunction spectrum is u.s.c. on \mathcal{U} .

Proof. If \mathscr{U} is not Q, then (see [4, p. 77, Lemma E.2.]) \mathscr{U}' has empty interior. Therefore, for any $U \in N_0$ there exists $x \in U \setminus \mathscr{U}'$: that is to say, $1 \in \sigma(x)$. But $\sigma(0) = \{0\}$.

Conversely, suppose \mathscr{U} is (unital and) Q, and let $x \in \mathscr{U}$: then (see [4, p. 77, Lemma E.3.]) $\sigma(x)$ is a compact subset of C. It will suffice to show that for any $\varepsilon > 0$ there exists $U \in N_0$ such that $y \in U$ implies $\sigma(x + y) \subseteq A_{\varepsilon}$, where A_{ε} is the open set $\{z \in \mathbb{C} \mid \text{dist} (z, \sigma(x)) < \varepsilon\}$ (A_{ε} is empty if so is $\sigma(x)$).

Let us first prove the existence of R > 0 and $U_{\infty} \in N_0$ such that $y \in U_{\infty}$ implies $\sigma(x + y) \subseteq \overline{B(0, R)}$ (we shall denote with B(z, r) the open ball $\{\zeta \in \mathbb{C} \mid |\zeta - z| < r\}$). Since $0 \in \mathscr{U}'$, there exists $V_{\infty} \in N_0$ such that $V_{\infty} \subseteq G \mathscr{U}'$. Therefore there exist: a balanced $U_{\infty} \in N_0$ such that $U_{\infty} + U_{\infty} \subseteq V_{\infty}$; and a positive $r_{\infty} < 1$ such that $w \in B(0, r_{\infty})$ implies $wx \in U_{\infty}$. Set $R = \frac{1}{r_{\infty}}$: if $y \in U$ and $z \in \mathbb{C} \setminus \overline{B(0, R)}$, we have $\left|\frac{1}{z}\right| < \frac{1}{R} = r_{\infty} \leq 1$, so $\frac{x + y}{z} = \frac{1}{z}x + \frac{1}{z}y \in U_{\infty} + \frac{1}{z}U_{\infty} \subseteq U_{\infty} + U_{\infty} \subseteq V_{\infty} \subseteq \mathscr{U}'$, that is, $z \notin \mathfrak{E}(x + y)$.

Now let $\varepsilon > 0$, and set $K = B(0, R) \setminus A_{\varepsilon}$. If $z \in K$, then $x - z e \in \mathscr{U}^{-1}$; therefore $V_z \in N_0$ exists so that $x - ze + V_z \subseteq \mathscr{U}^{-1}$. As above, let $U_z \in N_0$ be such that $U_z + U_z \subseteq V_z$; and let $r_z > 0$ be such that $w \in B(0, r_z)$ implies $we \in U_z$. Thus, if $y \in U_z$ and $\zeta \in B(z, r_z)$, then $(x + y) - \zeta e = (x - ze) + y + (z - \zeta)e \in (x - ze) + U_z + U_z \subseteq x - ze + V_z \subseteq \mathscr{U}^{-1}$, that is, $\zeta \notin \sigma (x + y)$.

But K is compact, so from its open covering $\{B(z, r_z)\}_{z \in K}$ a finite subcovering $\{B(z_j, r_{z_j})\}_{j=1,...,N}$ (where $z_1, \ldots, z_N \in K$) can be extracted. Set $U = U_{\infty} \cap \left(\bigcap_{j=1}^{N} U_{z_j} \right)$: then $U \in N_0$, and $\sigma(x + y) \subseteq A_{\varepsilon}$ whenever $y \in U$.

REMARK 4. The "if" part of Proposition 3. can be so sharpened: if \mathscr{U} is not Q, then, for any $x \in \mathscr{U}$, $z \in \mathbb{C}$, and $U \in N_0$, there exists $y \in U$ such that $z \in \sigma (x + y)$. In fact (we assume $z \neq 0$: the case z = 0 being straightforward) $V = \frac{1}{z} U$ is still in N_0 : if $y_1 \in V$ is such that $\frac{x}{z} + y_1 \notin \mathscr{U}$, let $y = zy_1 \in zV = U$. Thus $\frac{x + y}{z} = \frac{x}{z} + y_1 \notin \mathscr{U}$, that is, $z \in \sigma (x + y)$.

3. The main result

Let us start with a definition.

DEFINITION 5. A (complex) topological algebra \mathcal{U} is said to have continuous quasi-inversion if it is Q, and the map $x \mapsto x' : \mathcal{U}' \to \mathcal{U}$ (or, equivalently if \mathcal{U} is unital, $x \mapsto x^{-1} : \mathcal{U}^{-1} \to \mathcal{U}$) is continuous.

For example, a locally multiplicatively-convex Q-algebra has continuous quasi-inversion: cfr. [4, p. 10, Proposition 2.8.].

THEOREM 6. Let \mathscr{U} be a complex locally convex algebra having continuous quasi-inversion. Then, for any domain Ω in \mathbb{C} and any holomorphic map $f: \Omega \to \mathscr{V}$, the multifunction $\sigma \circ f: \Omega \to 2^{\mathbb{C}}$ is Oka-analytic.

REMARK 7. a) As is customary, no assumption is made on the continuity of the product in a topological algebra, or on the completeness of the algebra itself.

15

b) A map $f: \Omega \to \mathscr{U}$ is said to be *holomorphic* when, for any $z \in \Omega$, the limit $f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$ exists in $\widetilde{\mathscr{U}}$ (the completion of \mathscr{U} as a topological vector space; see [2, p. 59, Definition 2.]. For other definitions, see [5, p. 22, Théorème 1.2.2.]: however, in the present case they are all equivalent to ours).

Proof of Theorem 6. By Proposition 3. and the continuity of f, the multifunction $\sigma \circ f$ is u.s.c. on Ω (besides, D is then open in \mathbb{C}^2). We shall assume \mathscr{U} to be unital (cfr. § 2.). Let $(\lambda_0, z_0) \in (\Omega \times \mathbb{C}) \setminus D$ (so $z_0 \in \sigma(f(\lambda_0))$) and $B = \mathbb{C}(x_0)$ be the subalgebra of \mathscr{U} of quotients of polynomials in $x_0 = f(\lambda_0)$, with complex coefficients, by invertible polynomials of the same kind. Obviously if such a quotient has an inverse, that is still a quotient of the same kind, that is, $\mathscr{U}^{-1} \cap B = B^{-1}$. Thus the complex unital locally convex algebra B is also Q, and $x \mapsto x^{-1} : B^{-1} \to B$ is continuous, i.e. B has continuous quasiinversion. Moreover B is commutative. By Zorn's lemma, there exists a maximal ideal m in B containing $y_0 = ze - x_0$ (of course m is regular). Since B is Q, m is also closed in B (cfr. [4, p. 77, Lemma E. 4.]); and, since B has the other properties listed above, the Gel'fand-Mazur theorem (see [3, p. 811]) can be applied to infer that the topological algebra B/m is isomorphic to \mathbb{C} . In other words we have a non-zero continuous linear multiplicative functional $\varphi: B \to \mathbb{C}$ such that $\varphi(y_0) = 0$. So for every $z \in \mathbb{C} \setminus \sigma(x_0)$ we have

$$\varphi([ze - x_0]^{-1}) = \frac{1}{\varphi(ze - x_0)} = \frac{1}{(z - z_0)\varphi(e) - \varphi(y_0)} = \frac{1}{z - z_0}$$

We can now apply to φ in \mathscr{U} the Hahn-Banach theorem, \mathscr{U} being locally convex. Thus, let $\tilde{\varphi} : \mathscr{U} \to \mathbf{C}$ be a continuous linear (but not necessarily multiplicative) functional that extends φ ; and set $\psi : \mathbf{D} \to \mathscr{U}$ by $\psi(\lambda, z) = [ze - -f(\lambda)]^{-1}$ for every $(\lambda, z) \in \mathbf{D}$. If we prove that $b = \tilde{\varphi} \circ \psi : \mathbf{D} \to \mathbf{C}$ is holomorphic, then we shall apply the criterion given by [8, p. 14, Lemma 2.] to conclude that each connected component of \mathbf{D} is a domain of holomorphy.

Let $J: \mathscr{U} \times \mathscr{U} \to \mathscr{U}$ be the Jordan product $J(x, y) = \frac{x \cdot y + y \cdot x}{2}$, for any $x, y \in \mathscr{U}: \mathscr{U}$ having continuous quasi-inversion, by [10, p. 1686, Proposition 1.] J is jointly continuous. Thus if $(\lambda, z) \in D$ the following limit exists:

$$\frac{\partial \psi}{\partial z}(\lambda,z) = \lim_{h \to 0} \frac{\psi(\lambda, z+h) - \psi(\lambda, z)}{h} =$$

$$= \lim_{h \to 0} \frac{[(z+h)e - f(\lambda)]^{-1} - [ze - f(\lambda)]^{-1}}{h} =$$

$$= -\lim_{h \to 0} J\left([(z+h)e - f(\lambda)]^{-1}, [ze - f(\lambda)]^{-1}\right) =$$

$$= -J\left([ze - f(\lambda)]^{-1}, [ze - f(\lambda)]^{-1}\right) = -[ze - f(\lambda)]^{-2}$$

(we have used the equality $x^{-1} - y^{-1} = \frac{x^{-1} \cdot (y - x) \cdot y^{-1} + y^{-1} \cdot (y - x) \cdot x^{-1}}{2}$, true for any $x, y \in \mathcal{U}^{-1}$).

To prove the holomorphicity of ψ in the variable λ , we need to extend J to $\tilde{J}: \tilde{\mathscr{U}} \times \mathscr{U} \to \tilde{\mathscr{U}}$ in a *jointly* continuous fashion. Indeed, for every $y \in \mathscr{U}$ the map $J_y: \mathscr{U} \to \mathscr{U}$ given by $J_y(x) = J(x, y)$ is continuous and linear, therefore it extends to a continuous linear map $\tilde{J}_y: \tilde{\mathscr{U}} \to \tilde{\mathscr{U}}$: set $\tilde{J}(x, y) = \tilde{J}_y(x)$ for any $(x, y) \in \tilde{\mathscr{U}} \times \mathscr{U}$. Let now \tilde{U} be a closed 0-neighbourhood in $\tilde{\mathscr{U}}$ (a topological vector space always admits a fundamental system of 0-neighbourhoods, cfr. [6, p. 16, 1.3.]): then $U = \tilde{U} \cap \mathscr{U}$ is a 0-neighbourhood in \mathscr{U} , thus a 0neighbourhood V in \mathscr{U} exists so that $J(V \times V) \subseteq U$. If \bar{V} is the closure of V in $\tilde{\mathscr{U}}$, then \bar{V} is a 0-neighbourhood in $\tilde{\mathscr{U}}$ (cfr. [6, p. 17, 1.5.]), and $\tilde{J}(\bar{V} \times V) \subseteq \tilde{U}$: in fact, if $y \in V$, then $J_y(V) \subseteq U$, whence $J_y(\bar{V}) \subseteq \tilde{U}$.

Now let $(\lambda, z) \in D$, and set $g : B(0, \delta) \to \mathscr{U}^{-1}$ by $g(h) = ze - f(\lambda + h)$ $(\delta > 0 \text{ small enough}): g \text{ is holomorphic in } 0$. If $a(h) = \frac{g(h) - g(0)}{h}$ for every $h \in B(0, \delta)$, then an easy computation leads to:

$$\frac{g(h)^{-1} - g(0)^{-1}}{h} = -\frac{g(h)^{-1} \cdot a(h) \cdot g(0)^{-1} + g(0)^{-1} \cdot a(h) \cdot g(h)^{-1}}{h} =$$

= $J\left(a(h), J\left(g(h)^{-1}, g(0)^{-1}\right)\right) - J\left(J\left(a(h), g(h)^{-1}\right), g(0)^{-1}\right) - J\left(J\left(a(h), g(0)^{-1}\right), g(h)^{-1}\right)$.

Since $\lim_{h\to 0} g(h)^{-1} = g(0)^{-1} \in \mathscr{U}$, while $\lim_{h\to 0} a(h) = g'(0) \in \widetilde{\mathscr{U}}$, the following limit exists in $\widetilde{\mathscr{U}}$:

$$\frac{\partial \psi}{\partial \lambda} (\lambda, z) = \lim_{h \to 0} \frac{g(h)^{-1} - g(0)^{-1}}{h} = \tilde{J} \left(g'(0), g(0)^{-2} \right) - 2 \tilde{J} \left(\tilde{J} \left(g'(0), g(0)^{-1} \right), g(0)^{-1} \right)$$

(if we could expand \tilde{J} , the latter expression would of course equal $-g(0)^{-1}$. $g'(0) \cdot g(0)^{-1}$).

Therefore, b is separately holomorphic in D: (it being continuous on D) b is then (jointly) holomorphic in D.

Theorem 6. has several consequences. Among them are the logarithmic pluri-sub-harmonicity of several functions of the spectrum in \mathcal{U} , such as the spectral radius, any k-th spectral diameter (with $k \in \mathbf{N}$), the spectral capacity, and many others. Also, we have: the pluri-analyticity of isolated eigenvalues,

2. - RENDICONTI 1985, vol. LXXVIII, fasc. 1-2

17

and, more generally, of spectral sets; the finite scarcity and countable scarcity theorems; and so on. For deeper analyses of the consequences of the Okaanalyticity, see e.g. [1], [9], [11], and the literature cited there.

BIBLIOGRAPHY

- [1] B. AUPETIT (1982) Analytic multivalued functions in Banach algebras and uniform algebras, «Advances Math.», 44, 18-60.
- [2] M. HERVÉ (1971) Analytic and plurisubharmonic functions (in finite and infinite dimensional spaces), «Lect. Notes in Math.», 198, Springer-Verlag, Berlin.
- [3] I. KAPLANSKY (1948) Topological Rings, «Bull. Amer. Math. Soc.», 54, 809-826.
- [4] E.A. MICHAEL (1952) Locally multiplicatively-convex topological algebras, « Mem. Amer. Math. Soc. », 11.
- [5] PH. NOVERRAZ (1973) Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, « Notas de Mat. », 3, North-Holland, Amsterdam.
- [6] H.H. SCHAEFER (1971) Topological vector spaces, «Grad. Texts in Math.», 3, Springer-Verlag, Berlin.
- [7] Z. SŁODKOWSKI (1981) Analytic set-valued functions and spectra, «Math. Ann.», 256, 363-386.
- [8] Z. SŁODKOWSKI (1983) Uniform algebras and analytic multifunctions, in « Rend. Accad. Naz. Lincei » (8) 75, 9–18
- [9] Z. SŁODKOWSKI (1982) A criterion for subharmonicity of a function of the spectrum, « Studia Math.», 75, 37-49.
- [10] P. TURPIN (1970) Une remarque sur les algèbres à inverse continu, «C.R. Acad. Sci. Paris », 270, 1686-1689 (A).
- [11] E. VESENTINI (1983) Carathéodory distances and Banach algebras, «Advances Math.», 47, 50-73.