ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MARCO BARLOTTI

A note on the minimal normal Fitting class

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 77 (1984), n.6, p. 221–225. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1984_8_77_6_221_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 15 dicembre 1984

Presiede il Presidente della Classe Giuseppe Montalenti

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Teoria dei gruppi. — A note on the minimal normal Fitting class. Nota di Marco Barlotti, presentata (*) dal Socio G. Zappa.

RIASSUNTO. — Un gruppo finito ciclico-per-nilpotente appartiene alla minima classe di Fitting normale se e solo se è nilpotente.

1. Introduction

All the groups considered in this paper are supposed to be finite and soluble. A Fitting pair (see [6]) is a pair (A, d) where A is an abelian group and d assigns to each group G a homomorphism d_G of G into A such that (1) whenever G, H are groups and $\alpha: G \to H$ is a normal embedding, $d_G = \alpha d_H$ and (2) for every $a \in A$ there exist a group G and a $g \in G$ such that $gd_G = a$. The class of all the group G such that $Gd_G = 1$ is called the kernel of the pair (A, d) and is a normal Fitting class.

Blessenhol and Gaschutz introduced in [1] Fitting pairs built upon permutation representations and upon the determinants of the linear maps induced by conjugacy on certain chief factors; these constructions have been afterwards

(*) Nella seduta del 15 dicembre 1984.

generalized by many authors. Transfer Fitting pairs were introduced by Laue, Lausch and Pain in [5] and have been used in a more elaborate version by Berger ([2]) to give a description of the unique minimal normal Fitting class \mathfrak{S}_* . We use a special case of the transfer Fitting pairs to prove that a cyclic-by-nilpotent group (i.e., a group G which possesses a cyclic normal subgroup N such that G/N is nilpotent) is in \mathfrak{S}_* if and only if it is nilpotent; note that the group $\langle x, y/x^{25} = 1, y^2 = 1, yxy = x^{-1} \rangle$ seems to belong to the kernel of all the possible Fitting pairs defined in the track of [1]. Then we give a construction which shows that some generalizations of the main theorem are not possible.

The notation is conventional: see, e.g., [3] and [4]. The basic information on normal Fitting classes can be found in [1] and in [3].

2. The Fitting pair (S, $d^{p,q}$)

Let p be a prime, and let q be a prime dividing p-1; let Z_p be the cyclic group of order p, and let S be the Sylow q-subgroup of Aut (Z_p) . We now assign to every group G a homomorphism $d_G^{p,q}\colon G\to S$. Since we are describing a special case of the Fitting pairs defined by Berger, for the proof that all the mappings involved are well defined and that $(S, d^{p,q})$ fulfils the requirements for a Fitting pair the reader is referred to [2] or, better, to [3].

Let G be a group, let X be a subnormal subgroup of G of order p and let N be the normalizer of X in G. Choose an isomorphism $\psi: X \to Z_p$, and define as follows an homomorphism $\tilde{\psi}: N \to \operatorname{Aut}(Z_p)$: for any $y \in N$, $y\tilde{\psi}$ is the automorphism of Z_p which maps the element z to $(y^{-1}(z\psi^{-1})y)\psi$. Now choose a Sylow q-subgroup Q of N, and denote by $v_{G\to Q}$ the transfer of G into Q/Q'. We define a mapping $\vartheta_X: G \to S$ thus: if $g \in G$ and $gv_{G\to Q} = Q'y$, then $g\vartheta_X = y\tilde{\psi}$. Finally, let q^e be the exponent of S and let t(X) be an integer such that $t(X) \mid N: Q \mid \equiv 1 \pmod{q^e}$.

We now define the homomorphism $d_{G}^{\,p,\,q}$. If G has no subnormal subgroups of order p, then $d_{G}^{\,p,\,q}$ maps G onto the identity subgroup of G. Otherwise, let $[X_1], \ldots, [X_k]$ be the distinct conjugacy classes which make up the set of the subnormal subgroups of G of order p; for any $g \in G$ we define $g d_{G}^{\,p,\,q}$

$$=\prod_{i=1}^k ({m g}\, \vartheta_{{f X}_i})^{t({f X}_i)}\,.$$

3. Proof of the theorem

Theorem Let G be a cyclic-by-nilpotent group which is not nilpotent. Then $G \notin \mathfrak{S}_*$.

Proof. Let G be a minimal counter-example; then there exists an element x of G such that $\langle x \rangle \triangleleft G$ and $G/\langle x \rangle$ is nilpotent, G is not nilpotent and G belongs to \mathfrak{S}_* .

Take a chief series of G to which $\langle \mathbf{x} \rangle$ belongs; since G is not nilpotent, there exist a chief factor H/K of this series and an element \mathbf{y} of G such that \mathbf{y} does not centralize H/K; and, since $G/\langle \mathbf{x} \rangle$ is nilpotent, it must be $H = \langle \mathbf{x}^i \rangle$ for a certain positive integer i (and $K = \langle \mathbf{x}^{ip} \rangle$ for a certain prime p). Write the period of \mathbf{x} as iph, and let $X = \langle \mathbf{x}^{ih} \rangle$; X is a normal subgroup of G of order p. It must be $\mathbf{y}^{-1}\mathbf{x}^i\mathbf{y} = \mathbf{x}^{im}$ with $m \not\equiv 1 \pmod{p}$, whence $\mathbf{y}^{-1}\mathbf{x}^{ih}\mathbf{y} = \mathbf{y}^{-1}(\mathbf{x}^i)^h\mathbf{y} = (\mathbf{x}^{im})^h = (\mathbf{x}^{ih})^m \not\equiv \mathbf{x}^{ih}$ and we have proved that \mathbf{y} does not centralize X. Now write \mathbf{y} as a product of elements whose order is a power of a prime: these elements cannot all centralize X, so there exists an element \mathbf{y}_1 of G, whose order is a power of a certain prime q, which does not centralize X; since \mathbf{y}_1 induces a q-automorphism in X, q divides p-1 (and, in particular, $q \not\equiv p$).

We want to prove that $y_1 d_G^{p,q} \neq 1$, whence G does not belong to the kernel of the Fitting pair $(S, d^{p,q})$ defined in section 2, and this contradicts the assumption that $G \in \mathfrak{S}_*$.

The subgroup (x, y_1) is not nilpotent; it is clearly cyclic-by-nilpotent, and it belongs to \mathfrak{S}_* because it is subnormal in G (by the nilpotency of G/(x)) and $G \in \mathfrak{S}_*$. So by the minimality of G we must have $G = (x, y_1)$: this yields that X is the unique subgroup of G which has order p, hence to prove that $y_1 d_G^{p,q} \neq 1$ we only have to show that $y_1 \vartheta_X \neq 1$ or, which is equivalent, that if Q is the chosen Sylow q-subgroup of G and $y_1 v_{G \to Q} = Q' g$ then g does not centralize X.

Since Q can be any Sylow q-subgroup of G, we choose it to contain y_1 . Let $\{t_1, \ldots, t_w\}$ be a complete set of right coset representatives of Q in G; since $G = \langle x, y_1 \rangle$ with $\langle x \rangle < G$, each t_i can be written as $a_i x_i$ where $a_i \in \langle y_1 \rangle \leq Q$ and $x_i \in \langle x \rangle (1 \leq i \leq w)$: hence $\{x_1, \ldots, x_w\}$ is a complete set of right coset representatives of Q in G all of whose elements belong to $\langle x \rangle$. For every $i \in \{1, \ldots, w\}$ there exist a $g_i \in Q$ and a $j(i) \in \{1, \ldots, w\}$ such that $x_i y_1 = g_i x_{j(i)}$ and by definition of the transfer homomorphism we have

$$y_1 v_{G \to Q} = Q' \prod_{i=1}^{v} g_i = Q' \prod_{i=1}^{v} (x_i y_1 x_{j(i)}^{-1}).$$

Let $\mathbf{g} = \prod_{i=1}^{w} (\mathbf{x}_i \, \mathbf{y}_1 \, \mathbf{x}_{j(i)}^{-1})$. Clearly \mathbf{g} acts on X (by conjugacy) in exactly the same way as \mathbf{y}_1^w does; but, since w is prime with q, $\langle \mathbf{y}_1^w \rangle = \langle \mathbf{y}_1 \rangle$ whence \mathbf{y}_1^w induces on X a non-trivial automorphism, and so does \mathbf{g} .

COROLLARY. The \mathfrak{S}_* -radical of a cyclic-by-nilpotent group is its Fitting subgroup.

Proof. By the previous theorem, the \mathfrak{S}_* -radical of a cyclic-by-nilpotent subgroup (being itself cyclic-by-nilpotent) is nilpotent, hence contained in the Fitting subgroup. Since the reverse inclusion is true for every group, the corollary is proved.

4. FINAL REMARKS

We conclude with a result which limits the possible generalizations of the previous theorem.

Theorem. Let G be a group. Suppose that there exist subgroups $N_0\,,\,N\,,\,$ A of G such that

- (a) $G = N_0 NA$;
- (b) N_0 , N < G;
- (c) N_0 , $N \in \mathfrak{S}_*$ and A is abelian;
- (d) $N_0 \cap N = A \cap N = A \cap N_0 = 1$;
- (e) there exists an isomorphism $\varphi : N_0 \to N$ such that for any $\mathbf{a} \in A$ and for any $\mathbf{n}_0 \in N_0$ $(\mathbf{a}^{-1} \mathbf{n}_0 \mathbf{a}) \varphi = \mathbf{a} (\mathbf{n}_0 \varphi) \mathbf{a}^{-1}$.

Then $G \in \mathfrak{S}_*$.

Proof. We give a sketch of the proof, leaving the details to the reader. Let D be the direct product of two isomorphic copies of NA, and let α , β be isomorphisms which map NA onto the direct factors of D; then D is the internal direct product of (NA) α and (NA) β . Note that N α and N β are normal subgroups of D, whence by (c) they are contained in the \mathfrak{S}_* -radical $D_{\mathfrak{S}_*}$ of D. Let $H = \{d \in D/d = (a \alpha)^{-1} (a \beta) \text{ with } a \in A\}$; by Lemma 2.3 of [6], $H \leq D_{\mathfrak{S}_*}$. Now let $K = (N \alpha) (N \beta) H$; clearly $K \leq D_{\mathfrak{S}_*}$ and (since A is abelian) K < D, whence $K \in \mathfrak{S}_*$. Finally, for any $n_0 \in N_0$ put $n_0 \eta = n_0 \varphi \alpha$; for any $n \in N$ put $n \eta = n \beta$; and for any $n \in A$ put $n \eta = (n \alpha)^{-1} (n \beta)$. We have thus defined a map $n \in A$ from $n \in A$ to K which extends to a homomorphism $n \in A$ onto K; since G and K are easily seen to have the same order, $n \in A$ is in fact an isomorphism and we have proved that $n \in A$.

To obtain groups which satisfy the hypotheses of this theorem, take any group N in \mathfrak{S}_* and let A be an abelian group such that there exists a non-trivial homomorphism δ of A into Aut (N); let ϑ be the automorphism of A which inverts every element and let N_0 be an isomorphic copy of N . The group we want is the semidirect product of $N \times N_0$ by A with respect to δ for the action of A on N and to $\vartheta\delta$ for the action of A on N_0 .

In particular, take N to be cyclic of prime order and A to be cyclic: this example shows that in the condition "cyclic-by-nilpotent" of the theorem in section 3 "cyclic" cannot be replaced by "elementary abelian" nor can "nilpotent" be replaced by "supersoluble".

REFERENCES

- [1] D. BLESSENHOL and W. GASCHÜTZ (1970) Über normale Schunck- und Fittingklassen, « Math. Z », 118, 1-8.
- [2] T.R. Berger (1981) The smallest normal Fitting class revealed, « Proc. London Math. Soc. » (3), 42 (1), 59-86.
- [3] K. Doerk and T.O. Hawkes Finite soluble groups, to appear.
- [4] D. Gorenstein (1968) Finite groups, Harper & Row.
- [5] H. LAUE, H. LAUSCH and G.R. PAIN (1977) Verlagerung und normale Fittingklassen endlicher Gruppen, «Math. Z. », 154, 257–260.
- [6] H. LAUSCH (1973) On normal Fitting classes, «Math. Z.», 130, 67-72.