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Analisi matematica. — Nonlinear analysis. New arguments and 

results. No ta I <*) del Socio straniero L A M B E R T O CESARI. 

RIASSUNTO. — Si presentano condizioni sufficienti in forma astratta per l'esistenza 
di soluzioni di equazioni operazionali non lineari la cui parte lineare non è autoaggiunta. 

1. INTRODUCTION 

Recent results of Cesari-Bowman [2] on non selfadjoint non linear pro
blems for ordinary differential equations, of Cesari-Pucci [4b] on non self-
adjoint non linear problems for elliptic differential equations, and of Cesari-
Kannan [3d] and Cesari-Pucci [4a] for hyperbolic problems were obtained 
by certain new arguments. We unify here the main points of the argu
ments in a slightly more general situation, to obtain existence theorems for 
solutions of operator equations (4.i), (7.i), (7.ii) and corollaries. In par
ticular we formulate, for non selfadjoint problems, some sufficient conditions 
of the Landesman-Lazer type for existence of solutions. 

2. T H E ALTERNATIVE METHOD 

Let us consider the operational equation 

(1) E# = N# , xe X , 

where E : D (E) cz X -* Y , N : X ^ Y are operators from a Banach space X 
into a Banach space Y, E linear with domain D (E) c X, possibly non self-
adjoint, with ker E possibly non trivial (resonance), and N not necessarily linear. 
Usually, E is a linear differential operator in a bounded domain G of Rv , v > 1 , 
with associated linear homogeneous boundary conditions. Let P : X ->*X , 
Q : Y—>Y be projection operators (i.e., continuous, linear, idempotent) with 
X0 = P X 3 ker E ' ,X 1 = ( I — P ) X , Y 0 = Q Y = ) k e r E * where E* is the 
adjoint of E , Yx = ( I — Q) Y , where Yt is the range of E restricted to 
Xj n D (E). Thus, we have the decompositions X = X0 + Xj , Y = Y0 + Yt 

(direct sums), and since E is one-one and onto from Xj O D (E) to Yl9 the in-

(*) Presentata nella seduta del 15 giugno 1984. 
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verse operator H : Y -> X Pi D (E) exists as a linear operator. The following 
relations usually hold: 

(k,) H ( I — Q ) E = I — P , (k2) QE = E P , (k3) E H ( I — Q ) = I — Q . 

Under these assumptions, then (1) is equivalent to the system of auxiliary 
and bifurcation equations 

(2) x = P * + H.( I—Q)Nff , 

(3) Q ( E — N ) * = 0 . 

We refer for details to Cesari [e.g., labede], and particularly to [le] where 
it is mentioned how this system of equations can be related to fixed point theo
rems and other important tools of analysis. For applications we refer to the 
same papers, and particulary to [le] also for references to the many 
authors who have used this process. As was mentioned in [le], the bifur
cation equation (3) expresses in a global abstract form that process of " ca
sting out the secular terms " which Laplace used step by step in problems 
of perturbations. The decomposition (2, 3) has been used in problems with 
strong nonlinearities by many authors (cf. [le]). Note that, for X0 = ker E? 

then relation (^a) reduces to QE = 0 = EP, and equation (3) to QN# = 0 . 
While X0 = ker E in most applications, the choice of X0 larger that ker E has 
been relevant in a number of applications, as in the direct proof in [7] of the 
fundamental theorems for linear ordinary differential equations in the complex 
field (Cauchy, Frobenius, Perron, Lettenmeier), in the proof that it is always 
possible to make H a contraction map ([la] for Hilbert spaces, [6] for Banach 
spaces), in the proof [Id] that the use of finite elements for problems at reson
ance can be framed in the alternative method, and in the recent proof concerning 
Dirichlet series solutions of differential equations [5]. 

3. T H E TRANSFORMATIONS S AND a 

Let >̂ = dimX 0 , <7 = dim Y 0 . We shall need the following assumption: 
(*) (a) oo >p > q > 0 with a decomposition X0 = X01 + XQ^, dim 

X01 = #; (b) There are continuous maps G : X01 —*Y , S : Y0 - ^X 0 1 such that 
S-1:(0) = 0 and SQ<r : X01 —* X01 is the identity map. 

First dim X02 =p — q if oo > p> q > 0, dim X02 = coiioo=p > q > 0 , 
and Xo2 istrivial if oo > p = q > 0 . Now, under assumption (*), problem 
(l)y hence system (2), (3), is equivalent to the fixed point problem for the 
transformation T, or (#0 l , x02, x^) -> (^0i > 0̂2 > î)> defined by 

Tj : x, = H (I — Q) N (x0i + x02 + x,) , 

(4) T { T a : ^ 1 = *01 + * S Q ( E — N X ^ + ^ + ^ i ) , 

^ 3 • *^02 : = = ^02 > 
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where k is a positive constant, and x = x01 -f x02 -f x1 , x = £0i + #oa + #1 > 
#01 > #01e X0 1 , #02, %j G X02 , i j , ^ e Xj . Actually, we shall keep x02 fixed 
in X02 (thus, x02 = 0 if 00 > p = q > 0), so that T reduces to a map (x01 , #,) -> 
-> (x0] , âCj) defined by the first two relations in (4). Moreover, we shall rewrite 
T2 in the following form 

(5) T 2 : xm = (*w — SQ ex xm) + SQ (a*01 + k (E — N) *w) 

— k SQ [(E — N) *01 — (E — N) (*w + oc02 + * , ) , 

where the first term in the second member is zero. 

Concerning assumption (*) we note that, whenever X = Y, or at least 
X01 c= Y, we can always take a to be the inclusion map j : X01 —> Y. If we as
sume 00 > p > q > 0 , X = Y = L2 (with inner product (u , v) and norm 
u = (u, z/)1/2), we can take orthonormal bases in X0 and Y0, say X0 = sp (fa , 
. . . , fa), Y0 = sp (coj . . . , <ùQ), and assume that we may take the bases in 
such a way that the qx <? matrix M = [(cos, fa), s , / = 1 ,• . . . , q] is non sin
gular. Then we take Xor = sp (fa , . . . , <|>ff) , X02 = sp (fa+i , . . . , fa), (X02 tri
vial if p = q), and we may define S : Y0 —* X0 as follows: For y e Y0 , or y = 
= Ssdf co, with d* = col (df , . . , , d*), df = (y , *>,), take x = Sy = 2 , d, fo 
with d = col (di , . . . , dq), d = M- 1 d # . Then obviously, S"1 (0) = 0 since M 
is non singular. On the other hand, if x e X01 a Y , x = 2^ q cj><j, c = col 
(^ , . . . , ^ ) then 

Q x = 2 , (a?, cos) cos (*) = 2 , (S< ^ fa , cos) cos (*) == 

= 2 , (S^ (co, , fa) c%) co, (*) = S s cf cos (*) , 

where c* = col (cf , . . . , c* ), £# = Mc. Thus, SQ x==Hic!i fa , c = col 
(^ , . . . , c'q), c = M _ 1 (Mc) = c, and SQa is the identity map on X01. Note 
that above we have By = M _ x y . 

4. A N EXISTENCE THEOREM 

For the sake of simplicity we assume here that X0 = ker E, Y0 = ker E # , so 
that equation (3) reduces to QNx = 0, and T 2 reduces to x01 = x01 — k SQNx . 
Let L, d, h be the norms of H , S Q , I — Q, or at least constants such that 
II % ||x < L || y ||Y for yeYit and || SQy | |x <d\\y ||Y , || (I - Q ) y ||Y < 
< h \\y ||Y for ye Y , and assume that assumption (#) holds. 

(4.i) THEOREM. Let C , D , R0, r , p > 0 and r' > 0 be constants such that 

|| Nx ||Y < C for all xeX, \\ x | |x < R0 + r + r' , 

|| N«? — Ny | | Y < D 11^—y ||X /or «// * , y € X , || x | |x , | | j l l x < 

< R 0 + r + r ' , 
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|| ax01 — k Nx01 ||Y < p R0 for ali xOÌ e X0 1 , || x01 | |x < R0 , 

LAC < r , pd < 1 , KD (r + r') < (1 — pd) R0 . 

Assume that T is a compact map from X into X. Then problem Ex = N# 
Adtf <z£ foas£ one solution x e X , || a? || <: R0 + r + r ' . Actually y r' = 0 z/̂ > = # ; 
<awrf j/"^) > q ,r' > 0 , £/œ# ^ problem has at least one solution x for every 

^02 ^ -^02 > 11 ^02 11 _ r • 

Proof Let S0i , S3 denote the balls in X0] , X3 of center the origin and 
radii R0 , r respectively. Let x02 be an element of X02 with || x02 \\ < r' (x02 = 0 
if r' = 0). Let Q = S0] X {#02} X Sv Let T denote the transformation defin
ed by (4) on S0i X {#02} X Si (with E — N replaced by — N. Then, for every 
pair (x01, Xj) e S01 X Si we have 

II Si llx = Il H (I — Q) N (x01 + x02 + x,) | |x < LAC < r , 

II £01 llx = II *oi — k SQN (*oi + x02 + x,) ||x 

= II (*OJ — SQ GX01) + SQ (ax01 — kNx01) + kSQ (N^oi — N (x01 + x02 + x2) | |x 

< 0 + pdR0 + kdD (r + r') < R0 . 

Thus, T maps S01 X {xQ2} X S1 into itself. Since T is compact, by Schau-
der's fixed point theorem, T has at least one fixed point (x01, xQ2, x1) = T (x01, 
x02, xt) in S0i X {x0±} X S3 , that is, x = x0i + x02 + x1 is a solution of (2), (3), 
hence of (1). 

If Y0 is finite dimensional, so is X01, and if T3 is known to be compact, then 
T 2 has finite dimensional range, hence T2 also is compact, and so is T. 

As a particular case we assume now that X = Y is a space of bounded vec
tor functions on a bounded domain G of R v , v > 1, with values in Rs, s > 1, 
and II x | |x = || x H^ = Sup [ | x (t) | , t e G], where | | is a norm in R s . We 
assume that N is of the form N# = / (t)+g (t, x(t))9 te G , * . e X , wi th / : G -> 
- > R s , ^ : G x R ^ R s , both / and g bounded. 

Let 00 > p > q > 0, assume that M is not singular, and let S : X01 -> Y01 be 
defined as in no. 3. Let L , d , h be constants such that || Hy H^ < L || y W^ 
for all yeYly and \\SQy\L <d\\y\U,\\(I-Q)y\L<h\\y\L forali 
ye Y'. We take for G- the identity map. 

(4.ii) COROLLARY. Let 00 > p > q > 0 and let c , C , D , R0 , r > 0 and 

r' > 0 be constants such that 

l i / L < ^ \g{t,x)\<C for all * e G , * e R M * I < R o + r + r', 

\g(t,x)—g(t,y)\<D\x—y\ forali te G, x,yeRs, 

I x I , I y I < R0 + r + r', 

I x '— kg(t, x) I < pR0 for all x e Rs, | x \ < R0 , t e G , 

LA (c + C) < r , pd < 1 , kdc + kdD (r + r') < (1 — pd) R0 . 

file:////SQy/L
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If T, is compact, then there it at least one solution xofEx = N# with \ x | < 
<Ro + r + r' . Actually, r' = 0 if p = q ; tftó if p > q , r' > 0, then the 
problem has at least one solution x for every x02e X0 2 , || x02 W^ < r' . 

Proof The proof is the same as for the theorem, where relations (8) are 
now replaced by 

| | ^ | L < | | H ( I - Q ) [ / ( 0 + ^ ( ^ * ( 0 ) ] L < L A ( ^ + C ) < r , 

II »oi Hoc < II (*oi — SQa*oi) + SQ (<JX01 — kg(t, x01) + &SQ [£ (*,*0i) — 

— g (t9xu + x02 + x,)] — k SQ f(t) || < 0 + dpR0 + M D (r + r') + kdc < R0 . 

5. DIFFERENT TOPOLOGIES 

In [2], [4b], [4a], [3d] we considered various situations where points of the 
arguments above could be used by suitable choices of the spaces X , Y . 

(a) In [2] we considered non selfadjoint problems for ordinary differen
tial equations, say Ex = #<*> + E,-/*, (t) x^-V =f(t) + g (t, x (t)) , t e [0 , a] c 
c R, pj of class Cn~J', with linear homogeneous boundary conditions involving 
x«)(Q)yx«)(a),j = Q, 1 , . . . ,n — 1 . H e r e / : [0 , a] -*R y g : [0 , a] X R -» 
-> R are continuous bounded functions. By first taking X = Y = L2 [0 , a] , 
we defined P and Q as the natural orthogonal projection operators onto X0 = 
= ker E , Y0 = ker E*, of dimensions p,q>co>p>q>0, we took a the 
identity operator, and we defined S as in no. 3. Then we restricted X , Y to 
X # = Y # = C [0 , a] , and then rV1 : Xx -* Xx is compact in the topology of 
C since its range is contained in O [0 , a] n > 1. The corollary applies. 

(b) In [4b] we considered non selfadjoint elliptic equations of order 
2m , m > 1 , Ex = N# in a number of situations. In any case, with X = Y = 
= L2 (G) , G cz Rv , v > 1 , P and Q could be defined as the natural orthogonal 
projections of X and Y onto X0 = ker E and Y0 = k e r E # respectively, of di
mensions co >p > q >0 , q assumed to be finite. We assumed further that 
S could be defined as in no. 3 with M non singular. Let N# =f(t) + g (t, 
Dx), te G, with bounded functions/ : G —> R , £ : G X R^ - * R ,g continuous, 
where g depends on t and on the system ~Dx of the [x derivatives of x in G of 
orders 0 <' | a | < k0 < m . 

Assume that the linear homogeneous boundary conditions are expressed in 
terms of partial derivatives of orders 0 < | a | < k0 . Then we considered a space 
Z , W c H f f l c Z c H f o c L 2 (G), such that the imbedding maps j \ : W -> Z , 

j 2 : Z -* Hko are continuous, and j \ is compact, and we took X* = Y* = Z . 
Then Tj as a map from X3 to Xx is compact since the range of Tx is in W, and 
the theorem applies for weak solutions. We called Z the intermediate space. 

23. — RENDICONTI 1984, vol. LXXVI, fase. 6. 
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For instance, for 2 (m — k0) > v , by Sobolev imbedding theorem all ele
ments x e Hm have distributional partial derivatives D a x, 0 < | a | < k0, all 
bound d functions in G (and continuous in the interior of G). In this situation, 
fo rZ = H*°, or Z = W*0'00 (G), the theorem applies with X* = Y* = Z. As 
a further particular case, for k0 = 0 , and 2 m > v , all elements xe Hw (G) 
are bounded functions in G. Then for X # = Y # = Z = L ^ (G) the corol
lary applies. 

(c) In [3d] and [4a] we considered certain self-adjoint hyperbolic pro
blems in R2 with periodicity conditions reducing the problem to an interval 
G in R2. We took for X = Y a suitable space of continuous functions on G, 
and for P and Q different projection operators of X and Y onto X0 = ker E , 
Y0 = ker E # , E = E # , of infinite dimension. Again we had N# =f(t, s) + 
+ g (t, s , x (t, s)) with / and g bounded, and T 2 was not compact in C. We 
then restricted X0 to a subset X* of X0 , X* convex and closed in C, made up 
of Lipschitzian functions on G, and such that T 2 maps X* into X*. Now 
both rT1 and T 2 are compact on Xx and X^ respectively, and T is compact on 
X, X Xo . 

Remark 1. For numerical examples of problems mentioned in parts (a), 
(b), (c) above we refer to the same paper [2], [4b], [4a], [3d]. 

Remark 2. In [4b], and hence in part (b) above, it is not necessary that 
E be elliptic. All that is needed is that decompositions X = X0 + X x , Y = 
= Y0 + Y3 occur with projection operators P , Q so that PX = X0 = k e r E , 
QY = Y0 = ker E*, oo >p > q > 0 , q finite, with p = dim X0 , q = dim Y0 , 
and a subspace X01 of X0 of dimension q , maps G and S as in no. 3, and H so 
as (^23) hold. Examples of this situation will be exhibited elsewhere. 

Remark 3. For self adjoint elliptic problems of order 2m, say 

(Ex)(t)=f(t)+g(x(t))y teG, xeH, 

with E elliptic and self adjoint, and ker E = ker E* = sp (^ , . . . , §q), g : 
R -> R , g continuous, with finite limits g ( + 00) and g (— 00), and for every 
element w e ker E, let G + , G~ denote the subsets of G where w > 0 and w < 0 
respectively. Then Landesman and Lazer [8] proved that the relation 

ifwdt + g ( + 00) I I a; I df — g (—co) \w\dt >0 (or < 0) 

G G+ G-

for every w e ker E , w ^ 0 , 

is a sufficient condition for Ex =f-{- g(x) to have a solution xe H^. Their 
proof for m = 1 was extended by Williams [ l ib] to any my and was motivated 

file:///w/dt
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by the alternative method. While we referred to a great many extensions in [le], 
we only mention here that Shaw [10] extended the statement above to non-
selfadjoint elliptic problems under the restriction that ker E = sp % , . . . , ([> ) 
and ker E* = sp (coj, . . . , cô ) have the same dimension and that the bases 
can be chosen in such a way that every element w = yLici cj>$ and corresponding 
element co = 2 ci cô  share the same regions of positivity and negativity in G, 
that is, w (t) co (t) > 0 in G . 

We also mention in connection with the Landesman-Lazer theorem 
that, if the values of g (x) lie in the interval [g (— oo), g ( + oo)] , then the 
condition above with > replacing > is a necessary condition for the problem 
Ex = / + g (x) to have a solution. 


