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Anal is i m a t e m a t i c a . — On the convergence of Neumann series 
in Banach space. N o t a d i V A S I L E I . I S T R â T E S C U , p r e s e n t a t a d a l C o r r i s p . 

E. V E S E N T I N I 

RIASSUNTO. — Si estende un risultato di N. Suzuki sulla convergenza della serie 
di Neumann per un operatore compatto in uno spazio di Banach. 

0. INTRODUCTION 

Let (S , B , (JL) be a measure space with \L positive and finite. Consider 
the Fredholm equation 

h (x) - j K (x , y)h(y)à (y) =/(*) 

where the kernel K ( , ) is of Hilbert-Schmidt type. One of the oldest itera-
ive methods for solving this equation is related to the so called Neumann series, 

oo r 

/ ( * ) + S Kn(x,y)f(y)â[,(y) 
n=lJ 

S 

where K n ( , Ì is the n-th kernel defined by K ( , ). A sufficient condition for 
the convergence of the Neumann's series is that the spectral radius of the ope
rator defined on L2 (S , B , [i) by 

g (x) — I K (x , y)g(y) d^ (y) 

be less than 1. 

This may be considered as a special case of the following problem: Let 
X be a complex Banach space and T in L (X) , L (X) is the set of all bounded 

(*) Nella seduta del 14 gennaio 1984. 
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linear operators defined on X with values in X, and consider the equation 

(1) x — Tx =y 

with y given in X and T is supposed to be compact element in L (X). 
A (iterative) scheme for solving the equation (1) is to consider the formal 

Neumann series 

(2) • £ T*y. 
n= 0 

It is obvious that if this is a convergent series then the sum gives the so
lution of the equation (1). 

In (4) the following result is proved. 

THEOREM 1. Let T be in L (X) and compact. Then, in order that the 
Neumann series (2) may be strongly convergent it is necessary and sufficient that 

•lim || T> y || = 0 . 

The purpose of the present Note is to show that there are other classes of ope
rators in L (X) for which a result like that in Theorem 1 is valid. 

In order to do this we recall the following definition of a class of (not necessarily 
linear) mappings. 

DEFINITION 2. (2) A continuous mapping f : X ~> X is said to be a locally 
power oi-set contraction if for each non-compact bounded set M in X there exists 
an integer n =n (M) such that 

a (/» (M) ) g ha (M) 

where a ( , ) is the Kuratowski's measure of non-compactness and k is a number 
in ( 0 , 1 ) and independent of the bounded set M. 

It is easy to see that any quasi-compact operator is a locally power a-set 
contraction. (We recall that an element R in L (X) is said to be quasi-compact 
if the following properties hold: 

(1) | |R» | | ^ K < œ , n = l , 2 , 3 , . ' . . , 

(2) there exists an integer m ^ 1 and a compact element Q in 
L (X) such that 

|| R™ — Q | | < 1 . 

Let X be as above and T e L (X) be a locally power a-set contraction, 
Consider the equation 

x — Tx =y 
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where y is given. We call the Neumann series of T at y the (formal) series 

oo 

Then we have the following result. 

THEOREM 3. Let T be an element in L (X) be a locally power y-set contrac
tion. Then, in order that the Neumann series ofT at y may be strongly convergent 
it is necessary and sufficient that 

(3) l i m | | T ^ | l = 0 . 

For the proof of this result we need some facts about linear locally power 
a-set contractions which are given below as lemmas. For the proof we refer 
to the paper of G. Constantin (1) or the author's book (3). 

LEMMA 4. If S e L (X) is a locally power a-set contraction then 

(z.zeop(S), | a | ^ l ) 

is a finite set. Here ap (, ) is the point spectrum of ( , ) . 

LEMMA 5. If Se L (X) is a locally power a-set contraction and z is a com
plex number with the following properties : 

i) I * I ^ I , 

2) (yn) i s a sequence in X with the property that (z — S) xn = 
=yn,limyn=y 

where (xn) is a bounded sequence in X. 
Then the set (xn) is relatively compact and if lim xn =^u then zu — Su —y. 

LEMMA 6. / / S e L (X) is a locally power a-set-contraction and z0 is a 
complex number with | z0 | ^ 1 and is not in ap (S) then (z0 — S)_ 1 (defined on 
the range of (z0 — S)) is a linear and continuous operator. 

Using these results we prove the following assertion. 

PROPOSITION 7. If Se L (X) is a locally power a-set contraction then 

(*, |* | ^l)na,(8)=a(S)n(*, 1*1^1)-

Proof. Let 
M=(z,zeep(S), | * | 2:1) 
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and 

N ' = ( * , | s | ^ 1 ) \ M -

If 

N 1 = N O P ( S ) 

(p (S) is the resolvent set of S) then 

N = N 1 U N 2 

and the assertion of the proposition is proved if we show that N 2 is the empty set. 
We remark that N is a connected set because, according to Lemma 4, M 

is a finite set. Also, N is an open set (in the relative topology). 
Then, if N2 is non-empty, we find zQ in N 2 and a sequence (zn) in Na such 

that 

l i m ^ = z(i . 

But 

(ii(*n-sni) 

is a bounded sequence and thus for some K > 0 we have 

| | (* n — S ) - i | | =£K. 

We consider now the disc with the centre at z0 and radius Kr1, since 
^ n e p (S) we have 

\z0-zn\<K-^\\(R(znyS))\\^ 

which gives that z0 is a regular point for S. This is a contradiction and thus 
N2 is empty. The proposition is proved. 

COROLLARI 8. Let S e L (X) be a locally power y-set contraction. Then 
(z , z G G (S) , I z | ^ 1) and (z , z e a (S) , | z | < 1) are spectral sets of S (i.e. 
these are closed and open subsets of a (S)). 

Now we are ready to prove Theorem 3. 
We remark, as in (4), that we may suppose without loss of generality that 

X is the closed subspace generated by the subset (y ,Ty , T2y , . . .) and that 
the subset of all elements u in X with limTw& = 0 is dense in X. 

Associated with the spectral sets (z , z e a ( T ) , | z \ <̂  1) and (z , z e a (T), 
| z | < 1) are the projections P and Q respectively. Since T is supposed to be 

2. — RENDICONTI 1984, vol. LXXVI, fase. 1. 
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a locally power a-set contraction it is easy to see that PX is a finite dimensional 
subspace. 

Now the proof of Theorem 3 can be continued exactly as in (4) and thus 
we omit the details. 
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