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Fisica dell’atmosfera. — Some properties of forced, dissipative large- 
scale circulations in a barotropic, non-divergent rotating atmosphere. 
Nota di L aura  G a r d in i  <* *), R en zo  L u p i n i ***) e C arlo  P e l l a c a n i <***>, 

presentata <****) dal Corrisp. E. B o sc h i.

Riassunto. — Viene studiata la stabilità dell’atmosfera in un pianeta ruotante, 
forzata da un agente esterno ed in presenza di dissipazione. Lo studio vien condotto nelle 
ipotesi barotropiche e riguarda, per l’effetto delle approssimazioni adottate, solamente 
quei fenomeni caratterizzati da grandi scale spaziali. In particolare viene studiata la sta
bilità dei flussi zonali che caratterizzano la circolazione dei maggiori pianeti del sistema 
solare; ne vengono determinate, servendosi della approssimazione di Galerkin, le con
dizioni di stabilità asintotica globale.

1. We shall discuss in this note some properties of the large-scale cir
culations in a model of atmospheric dynamics which describes the action oj 
three main physical mechanisms: forcing due to an external source of energy 
(solar heating), dissipation due to decay to smaller scales of motion and non
linear exchange of energy among spectral components of the field of flow. The 
mathematical model is derived from the general dynamic equations for a rotating 
fluid by adding reasonable parametrizations of physical processes occurring at 
smaller scales of motion (convection, shear-instability, turbulent transfer, etc.) 
and by neglecting any phenomenon related to the vertical stratification of the 
atmosphere (non-divergent, two-dimensional barotropic flow is assumed) as 
well as the inhomogeneities of the planet’s geometry (perfect sphericity is as
sumed). The resulting partial differential equation for the vorticity field is 
then further transformed, via a Galerkin-type approximation, into a finite set 
of ordinary differential equations which describe the time evolution of the am
plitudes of spectral components of the field of motion, representative of rele
vant prototypes of the global barotropic circulation, that is steady, axisymme- 
tric (or zonal) flow and periodic Rossby-Haurwitz waves. Thus, the climatic 
problem, concerning the long-time behaviour of the planetary circulation, is 
formulated in terms of recurrence and stability properties of the solution’s cur
ves in the phase-space of the model, as a function of a finite number of control 
parameters (forcing intensity, dissipation time-scales and angular speed of 
absolute rotation).

In particular we study the global and local asymptotic stability (in the sense 
of Liapounoff) of particular solutions representing purely zonal circulations
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for time-dependent, axisymmetric forcing field. In the autonomous case (con
stant forcing) the model defines a dynamical system with a compact, global 
attractor set whose critical elements (fixed points and periodic orbits) are the 
counterpart of steady, zonal circulations and periodic wTave-oscillations, respec
tively. The basins of attraction of the fixed points are investigated, as a func
tion of the control parameters; in particular we analyse the occurrence of bifur
cations of such fixed points into periodic orbits in the neighbourhood of their 
stability boundary.

2. The Navier-Stokes equations for two-dimensional flows in a layer of 
homogeneous, incompressible fluid on a rotating, spherical planet can be written 
(Pedlosky, 1979)

(2.1) —  -f —  (v cos 0) =  0
dx dy

m (du nv „ „ . aP \
(2 .2) P ( — ------- tan 0 2 co sin 0 v -) =  gx +  f x

\  dt a dx I

-77 H------tan 0 +  2 co sin %u --------) =  gy + f y
dt a dy /

where a is the planet’s radius, 9 and 0 are the longitude and the latitude, re
spectively, dx — a cos 0 d9 and dy =  a d0 are the differentials of the corre
sponding curvilinear coordinates, co is the angular speed of rotation, P is the 
pressure, ( u , v) is the velocity field, p is the density, (gx ,g y) is the field of 
external forces and { f x , f y) is the field of internal (frictional) forces. Moreover,

d a  1 d v d
dt dt a cos 0 ?9 a 30

is the * convective ’ time-derivative.
The continuity equation (2.1) can be solved to give

where the stream function  ̂  ̂ (9 » F* » 0  > I* =  sin 0, is any smooth function
uv

such that (cp , dz 1 > 0  =  0. Noting that the ‘ geometric ’ term s-----  tan 0
2 a

and —- tan 0 are bounded as 0 tends to 4= (tt/2), the limiting case of circula- 
a

tions with small relative angular momentum, that is (| u | +  | v | )<̂  aco, is 
described by the same set of equations (2.2), (2.3) without geometric terms. 
For such motions we can reduce these equations, by cross differentiation and 
summation, to a single scalar equation, whose non-dimensional form (we take
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co- 1 and a as the scales for time and space, respectively) reads

(2.4) -  Ç +  J(Ç,<1») +  2 4 = sG +  F
a  t s>0

where Ç=; V2 i  is the vorticity and J (Ç , denotes the Jacobian of Ç and 
G and F represent the vorticity generation and dissipation fields, respectively.

Introducing the sequence of spherical harmonic functions Y ln (<p , (i) as a 
complete orthonormai set, we can write the developements

oo
(2.5)

n — 1 2l<\*\
Cn¥n{t) Yj,

(2 .6)

8 W
l 

IIXJ1 2l<\n\
¥„( t)Y ln

where Cn— 1 \n (n +  1). Here use has been made of the well-known spectral 
property V2 Y ln +  n (n +  1) Y ln — 0 .

We can call I and n the zonal and the meridional index, respectively, of a 
spectral component of flow Y*, as the number of nodal meridians of is 
2 I I I and the number of nodal parallels is n — \ l \ (see Abramovitz and Stegun, 
1972).

Introducing the developements (2.5), (2.6) into the vorticity equation (2.4) 
and equating the Fourier coefficients of both members, the following sequence 
of ordinary differential equations is obtained (Platzman, 1960; Dutton, 1982)

(2.7) tr =  —  2  ÏtP» ** C* -  *'*>t CY +  GY +  Fy
 ̂ 3, OC

Y =; (fly , /y) ; fly == 1 , 2 , . . . ;  I /y I <  fly

where we use the notation ÇY =  ^  and co ==; /Y w (1 — 2 cY), while the explicit 
representation of the ‘ interaction ’ coefficients IY3a is reported in the appendix. 
In the following we shall use for the dissipation terms the simple representa
tion Fy =  — vY where the ‘ friction ’ coefficients vY (positive numbers) mea
sure the inverse of the decay-times of the various spectral components in the 
absence of forcing. Sometimes, in order to simplify the mathematical treat
ment, we shall also assume a unique dissipation time-scale, that is vY v for 
any y.

3. Clearly, the infinite sequence of equations (2.7), which is equivalent 
to the original partial differential equation (2.4), describes motions on all space- 
time scales, so that we have to ‘ truncate ’ it in order to isolate the dynamics 
of the planetary-scale components of the field of flow. The guiding principles 
for such a truncation are mathematical simplicity and, so far as possible, qua
litative adherence to observed properties of the planetary circulations. First, 
we identify within the spectrum those flow-components which represent the 
basic prototypes of the averaged atmospheric circulation. We note that



218 Atti Acc. Lincei Rend. fis. -  S. V ili, vol. LXXV, 1983, fase. 5

OO
2  i{^Ya represents the axisymmetric part of the field of flow (no longitu

dinal structure); for an axisymmetric forcing field, such as the one induced 
by solar heating, we expect that kinetic energy is primarily fed into purely zonal 
circulations, so that we have to include in our model a representative set of large- 
scale (small ri) axisymmetric components. Next, by non-linear interaction, 
there will be a transfer of energy from zonal flow to wave-components,

Y ^ , / y t ^ 0 , followed by a complicated ‘ cascade’ of energy through the 
whole wave-spectrum. We shall restrict our attention to the study of the first 
two mechanisms only, so that we shall discard in the basic set of equation (2.7) 
all the non-linear interactions among wave components, whereas we shall retain 
all possible wave-zonal flow couplings. By the selection rules obeyed by the in
teraction coefficients such truncation procedure is equivalent to reducing the spec
tral distribution of the indices to the two sequences {{n , 0); n =  1 , 2 , . . . . s}, 
which identifies a section of the zonal-flow field, and {(« , /) ; n =  1 , 2  , . . . , w} 
which identifies the wave-components of given longitudinal structure in
teracting with the zonal field of motion.

The resulting truncated set of s -f- w — m ordinary differential equations is

(3.1) : 2 (lyPn n)^m ( 3̂ C. ) "f" G n  ̂ 1 ,2  , . . . S

where denotes the imaginary part, i is the imaginary unit, n — (n, 0) 
and cop =  co/ (1 — 2 CW(J). Note that the vector index for wave-components 
y =  (riy , /) can be identified with the scalar index ny, by constancy of /.

A more compact formulation of the above set of equations can be obtained 
by introducing the following vector notations

Y>0

=  1 , 2  , . . . , w

(3.3)

(̂ Yp)̂  lyPn

(*)p =  Cp

( S ) n
(G )n = G n 

Wp =  Gp.

(3.4)

The set of equations (3.1), (3.2) can be re-written as

s = 2 2  +

(3.5) x — A (£) x 4- h
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where N =  diag {vj, v2 , 
defined by

(3.6)

, vs} and A =  i (M — Q) — Nx is the w X w matrix

m u — u  * s
[0 ]Y3 ' (O3 Syp

[NJyp =  V3 SY3 .

4. It is clear that the conditions ensuring local existence and uniqueness 
of the solutions of the set (3.4). (3.5) are fulfilled throughout the whole space 
Rm, when G and h are continuously differentiable functions of time. We show 
in this section that, in addition, for bounded forcing vectors G and h, the solu
tion curves are global in the future (see Stepanov and Nemytskii, 1960), as they 
enter, after a finite time, a positively-invariant, closed neighbourhood of the 
origin.

Let us consider the evolution equation for the two positive, quadratic forms

V — —  II £ ||2 +  [I x ||2 and W = || x ||2 . Taking the scalar product of equa- 
2

tions (3.4) and (3.5) by £ and x respectively, and using the symmetry property 
of the interaction coefficients (see appendix) we find

(4.1) V =  — 2 N0 v • +  29te <p • v*

(4.2) W =  (A +  A*) x -x* +  2 @eh-x*

where N0 — N +  N i , v ~  g , x \  and <p — (G , h) .
2 /

Moreover, £%e means real part, A* is the adjoint of A and the dot between 
vectors denotes scalar product.

Py equation (4.1) the following inequality is deduced

(4.3) — V < - v ,  V +  \\g>\\V*

where v* =  min . Equation (4.3) can be integrated to give
k

(4.4) V1/2 <  V1/z (0) exp (— v j )  +  J  || <p || exp (v. ( f  — tj) df  .
0

For a bounded forcing function, that is sup || (p || <  p., equation (4.4) gives
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Let C be the convex, compact subset of Rm defined by V1/2 <  —  .
V#

By equation (4.5) solution curves starting within C remain there indefini
tely, while, trajectories starting outside C enter an s-neighbourhcod of C , Ve,

of equation Y'A <  A  +  s in a finite time, Ts, given by

t £ =  — —  I n ------f-------
v* v 1/-' P v(0)— ---

We can then state the following

Proposition 4.1. For a bounded forcing function there is an invariant, closed 
neighbourhood of the origin, say C, which is globally attracting in the future for 
the solutions of the set (3.1), (3.2).

An important consequence of this proposition is that, for constant forcing, 
the long-term (climatic) behaviour of the atmospheric circulation, modelled by 
the system of equations (3,1), (3.2), is described by the recurrence properties 
of the corresponding dynamical system (Stepanov and Nemytskii, 1960) re
stricted to the compact subset C of the phase space.

From now7 on we shall restrict our analysis to the case of purely axisym- 
metric forcing, that is, we shall take h — 0 in the basic set of equations (3.1) 
(3.2). Clearly, the relevant solutionis now £ (t) =  N"1 G (t) , x ■=-, 0, which 
represents a state of forced zonal flow (FZF). We shall study the conditions
for which this FZF-solution is globally, asymptotically stable, that is lim W ==j 0,

£-»+00
for any initial condition.

Let g (t) denote the maximum of the (time-varying) spectrum of the matrix 
A +  A*. By equation (4.2) we can write {h — 0)

(4.6) W1/2 <  W1/2 (0) exp S (t)

t
where S (t) - -  J a (tf) dt'. It is clear that S (t) <  — a <  0 is a sufficient con-

o
dition for global, asymptotic stability of FZF.

Now, by Gerschgorin’s theorem (see Wilkinson, 1965) any eigenvalue of 
A +  A* must satisfy the inequality

I X ■—  2  v3 ! <  2  I (h r  —  ïyp)  ’ 5 I J V P .
T
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It follows that

(4.7) max £  || (I3y — Iv(3) || || g || <  2 ve , W >  0
P Y

is sufficient for global, asymptotic stability of FZF. On the other hand, by 
equation (4.5) and Proposition 4.1, for any solution starting within C, we have

|| S || <  V T  V* <  J i  , so that
V.

(4.8) 2*/* V2___________#______
max 2  II Ipr ~  ^P IIy

implies (4.7). We can then state the following.

Proposition 4.2. In the case of weak (in the sense of equation (4.8)) axisym- 
metric (h =  0) forcing, the corresponding FZF-solution, g =  N-1 G and x ~ 0 ,  
of the system (3.1), (3.2) is globally, asymptotically stable.

5. We note that the condition for global, asymptotic stability of FZF 
given in the previous section does not involve the angular speed of rotation, 
which has been eliminated, during the demonstration, by the rough estimate 
given in equation (4.6).

In order to establish the role of absolute rotation on the stabilty of forced 
axisymmetric circulations, we have then to resort to a weaker stability condi
tion, such as the local, asymptotic stability condition. In this section we shall 
assume that the axisymmetric forcing field is steady, so that the set of equations
(3.1) , (3.2) is autonomous and the FZF-solution represents a fixed point for 
the corresponding dynamical system. Thus, the local, asymptotic stability con- 
ditiop can be written

(5.1) & e \ A < 0

where Xa denotes the spectrum of A. To simplify our analysis we shall also 
assume N x =: vE, where E is the identity matrix w X w. Equation (5.1) defi
nes an open domain, say S, in Rs, whose boundary (the ‘ marginal ’ stability 
boundary) we shall call S. The open set U ==j S' — S contains all the vectors 
g =  N-1 G such that the corresponding FZF-solution is unstable. By Pro
position 4.2, for any vector e belonging to Rs there exist S >  0 such that the 
segment e ; | £ | <  §} belongs to S. We can decompose e into the sum 
of two vectors, e+ and e~ say, such that M + =  M (e+) is a symmetric matrix, 
while M“ =  M (e-) is antisymmetric (see equations 3.5). Thus, the matrix 
A( £e)  can be written in the form

(5.2) i%M~ +  i (£M+ +  Q) — vE.
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Clearly, if M~ =  0 the whole line through e belongs to S, whereas if M~ 9  ̂0 
it crosses 2  in at least one point. In order to examine the effect of absolute 
rotation on the stability of FZF-solutions, we shall determine the perturbations 
on 2  induced by slight variations of the matrix Q. In particular we assume 
that the spectrum of i ï* M~ is critical (Ç* e e 2), that is

(5.3) XiM- — {Xx, X2, . . . , Xw} <= R

with \  — v >  X2 >  . . . >  and we look for the spectrum of A when 
MT — £ì =  sD , D a symmetric matrix and | s | <| v.

We can apply ordinary perturbation theory (Wilkinson, 1965) to find the 
coefficients of the expansion

X — v +  e jii +  s2 [x2 +  0 (e3)

representing the perturbed ‘ critical ’ eigenvalue Xx . After direct computation 
of the perturbation formulae, we find

(5 .4 )

(5.5) f̂ 2:
I E>*i • x \  I2

X, — v
< 0

where {^1 , x 2 , • • • , xwj is the orthonormal set of eigenvectors of iM r corre
sponding to the spectrum of equation (5.1). Equations (5.4), (5.5) imply that 
the marginally stable FZF-fixed point £>* e becomes stable under slight, sym
metric perturbations of the basic matrix A; however, it is also clear from equa
tion (5.2) that the stabilizing effect of absolute rotation is strongly coupled with 
the structure itself of the forced zonal flow, as this structure influences the form 
of M + +  Q. and, consequently the value of the right side of equation (5.2). 
To clarify this point let us consider the case of a single dyadic wave-field, in 
which case the matrix A is 2 X 2 and the stability domain S can be expressed 
analytically by the equation

(5 .6 )  (*  • 5 +  Ac*)* +  (Iy3 • g) (hr • g) +  4  v* >  0

where b — 1̂  — IyY and A co =  ooY — co 3. Clearly the marginal stability boun
dary 2  is an elliptic hyperboloid, in this case. The form of the first term on 
the left side of equation (5.6) shov/s that absolute rotation (proportional to A co) 
is stabilizing for only those FZF-structures such that 0 <  A co b • Ç. In par
ticular, absolute rotation stabilizes anti-symmetric (with respect to the planet’s 
Equator) fields of zonal flow, as, in this case b • Ç =  0 (see selection rules).
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In this case of dyadic wave fields, the effect of solid rotation on the stability 
boundary admits a global geometric description; in fact, denoting by 2 W the 
marginal stability boundary corresponding to w, we easily find, by equation 
(5.6), =  c +  2 0, where the translation vector c is the solution of the linear
set of equations b • c +  Aco — 0 , •  c r=s IPy • c — 0.

6. When the constant, forcing vector G is changed so that the correspond
ing FZF-fixed point (£ =  N"1 G , x =  0) crosses the marginal stability boun
dary 21 and becomes unstable, a Hopf-bifurcation is expected to occur, in ge
neral (Marsden and McCracken, 1976). For our system of equations (3.4), 
(3.5) a particular family of periodic orbits can be found in a neighbourhood of 
2 , and represents an important new type of unsteady, forced regime of large- 
scale flow.

Let S0 belong to 2  ; then there exists a real number <r0 and a vector x0 such
that

(6.1) A (g0) x0 =; ia0 x0 .

Let us consider the family of periodic (circular) orbits of equations £ ==; £0 
and x ~  ocx0 exp {ic0 t), where a is any complex number. Clearly, these orbits 
satisfy equation (3.5).

The also satisfy equation (3.4) if

(6.2) 2 I « I* £  (IYP -  IgY) A* CH — Ng0 +  G
y >3

where ^  denotes (#0)3- In order to solve equation (6.2) with respect to a we 
multiply equation (6.1) by x0 to obtain

(6.3) - 2  (IY3- l 3 Y) * S o ^ ( q ^ ) =- ( N i ^ o ^ o ) > 0 .
y >3

Èy equations (6.2), (6.3) the following condition for the existence of circular 
orbits is obtained

(6.4) £0 • (NÇ0 — G) <  0 .

Equation (6.4), given £0 belonging to 2 , defines a half space, say F0, of 
bifurcation vectors N-1 G bounded by an hyperplane, say P0, passing through 
the critical vector Nr1 G0 =s £0. As, typically, P0 is transverse to 2  at £0, then 
r o fi U is a non-void, open set. By considering the reunion F =  U  (T0 fl U) 
we can formulate the following

Proposition 6.1. In the space of {constant) forcing vectors there is an open 
subset of U bounded by 2  to which there correspond unstable FZF-fixed points and 
periodic orbits of the form £ =  cte., x =  ax0 exp (zg0 t) with a and x complex 
and constant, a0 real and constant.
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The local, asymptotic stability of such circular orbits can be proved in the 
simple case of a dyadic wave-field (Lupini and Pellacani, 1984). For the ge
neral case we have only numerical evidence of stability but no rigorous proof.
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0 ; /Y 7  ̂4  +  h

-1

I I "4"
Wa +  % +  =  a dd

Moreover, the following symmetry relation holds

lyPa "4" Ï3yoc == 0
for 4 =  0 .


