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Geodesia. —■ The current situation in the linear problem of Mo- 
lodenskii. Nota I (*> di F austo Sacerdote e F ernando Sansò, pre
sentata dal Socio L. Solaini.

R iassu n to . — Si studiano le condizioni per 1’esistenza, l’unicità e la stabilità della 
soluzione debole del problema lineare di Molodenskii in approssimazione quasi-sferica, 
generalizzando una tecnica perturbativa usata in precedenza per la soluzione di tipo 
classico.

La procedura seguita richiede delle condizioni di maggior regolarità per il con
torno, di quelle usate nell’analisi del problema « semplice ». Il risultato ottenuto è resi
stenza e unicità di una soluzione con derivate seconde a quadrato integrabile, se il bordo 
ammette curvatura limitata.

1. Introduction

The problem of Molodenskii is the basic boundary value problem of phy
sical geodesy and consists in searching for the figure of the earth (the unknown 
boundary S) and for the external gravity potential w (*), given the gravity po
tential itself w and the gravity field g — Vw on the unknown S: w|s,fir|s- The 
gravity potential is assumed to be split into the gravitational part and the cen
trifugal part, the former being the Newtonian potential of a static mass distri

bution, the latter being the single term — co2 (x2 + y 2) corresponding to the

hypothesis of a rigid uniformly rotating planet. As such, Molodenskii’s pro
blem is a rather difficult non linear, free boundary value problem for the Laplace 
operator. It has been treated in the classical formulation by Hormander [1] 
and, after a suitable Legendre transformation, in a new formulation, known in 
geodesy as the gravity space approach, by Sansò [5] and Witsch [8].

The analysis, in the classical mathematical sense, of this problem is of 
interest to geodesists since we would like to know whether the solution exists, 
is unique and specially which are the regularity properties of this solution for 
a given regularity of the data. It is this last point, namely the continuous 
dependence of the solution on the data, which is of special importance since it 
is the basis for evaluating various approximation methods proposed on geodesy.

In this sense, for the physical reason that the surface of the earth is generally

(*) Pervenuta all’Accademia il 20 ottobre 1983.
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a rough surface, which at most can be assumed to satisfy a cone condition, we 
would consider as satisfactory a theorem of existence, uniqueness and conti
nuous dependence which requires no more than the boundedness of the first 
derivatives of the boundary data. This result has not yet been achieved, even 
for the linearized problem of Molodenskii. The reason is that, when linearized, 
the geodetic boundary value problem appears as an oblique derivative problem 
for the Laplace equation (cfr. Krarup [2], Hormander [1], Sansò [6]) on a 
boundary, the so called telluroid S0, which is as rough as the true surface of 
the earth. In this case the unknown function becomes the anomalous poten
tial T  defined as the difference between the actual potential and some “ normal ” 
reference potential, T  = w  — w0: this is easily seen to be a harmonic function. 
Once the potential T is found by solving the oblique derivative problem, the 
vector § describing the displacement between the actual surface and the appro
ximated telluroid can be recovered: the vector § depends on VT computed 
on the telluroid S0. We conclude that any reasonable solution of our problem 
should be so regular as to admit the trace of VT on the boundary, and this 
gradient must be at least an L2 function.

However, in mathematical literature the oblique derivative problem is 
usually treated, even in the weak sense, with milder assumptions as to the shape 
of the boundary. Moreover the classical weak solution for such problems is 
H 1, so that the trace of VT at the boundary is not defined.

Subsequently a specific analysis of linear Molodenskii’s problem was begun, 
to see whether we could cope with the above requirements.

In the next section we first recall the results obtained in Sansò [7], con
cerning the so called simple Molodenskii’s problem, where a simple reference 
potential w0 =  a\r is assumed; subsequently we state the main result of this 
paper, which is proved in section 3.

In Sansò [6] the existence and uniqueness of a classical solution T  e C2+s (Q) 
of the simple problem of Molodenskii

2. G eneral approach

AT — 0 in Q

(2.1)

T  = ----- 1- 0 (r~3)
r

is proved for weC1+e(iQ); the solution can be written as T  = G u , where 
G : C1+e (3Ü) C2+s (Q) is a continuous operator. Here Q. is the unbounded
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domain exterior to the surface aQ; its complement in R3 is a star
shaped domain Aj = (R /r )2Y lj |afì, where R is such that the spherical
surface centred at the origin with radius R is wholly contained in Q.

This result is then used to prove the existence and uniqueness of the solu
tion of the geodetic boundary value problem in almost spherical approximation, 
i.e. when the “ isozenithal ” field m0 involved in the boundary condition

(2.2) — m0 • VT -j- T  |:n =  u a • A

is close enough t o ---- — r :

(2.3) m0 = : ----—- r  +  [jl0 , [x0 “ sufficiently ” small in C1+s .
Zr

The proof takes advantage of the fact that p.0 • VT | dae C1+e (aQ); 
consequently, if the boundary condition is written as

1 aT
(2.4) —  r —— b T  \dQ =  \i0 • VT |3q +  u +  a • A

^ ar

the solution T  can be found as the fixed point of the transformation of C2+e (Q) 
into itself defined by

(2.5) T  —* G (ja0 • VT |aQ +  u)

in fact the norm of this transformation is dominated by || (x0 ||c1+e and becomes 
less than 1 when this quantity is small enough. The aim of this paper is to 
seek for a generalization of the above procedure to the weak solutions; what 
turns out to be non-elementary. As a matter of fact, in Sansò [7] it is proved 
that, if u e  (aQ), there exists a unique weak solution of (2.1) belonging 
to the space HH,;l(Q) of harmonic functions in L^oc(Q) vanishing at infinity, 
with zero first degree harmonic components and distributional first derivatives 
i n L 2(&).

Moreover, by a suitable regularization theorem it is proved that VT \m 
belongs to L 2(aQ); however this result is not strong enough to be able 
to apply the fixed point theorem as in (2.5), since we would need for that 
VT |aa€ (aD). What we need is therefore a stronger regularization
theorem; to this aim we must make stronger assumptions on the regularity 1

(1) We recall that, following Necas [4], pag. 55, a bounded domain is of class 
(k non-negative integer, 0 <  <  1), if its boundary can be represented by a

system of local charts, defined by functions that are (jl-Holder together with their deri
vatives of order <  k.
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of the boundary. The result we shall prove in next section is the following 
theorem :

I f  then the solution T  of problem (2.1) has distributional second
derivatives belonging to L 2(aQ); VT belongs to HJ-0C (Ü), so that VT has a trace 
on aQ in H i (aO) c= L 2 (aO).

As an immediate consequence, we can state that, since the field (jl0 defined 
in (2.3) is of class C1, (jl0 • VT e H[oc (O). and its trace belongs to Hi (aO). 
Hence the procedure outlined in the first part of this section (cfr. (2.4), (2.5)) 
can be applied to solve the boundary value problem in almost spherical approx
imation, provided that || (x0 || ci is small enough. In fact, let us define 
H H '2 (O) as the space of functions in H H '1(0 ) with second distributional 
derivatives in L 2 (O), with

II w IIhH'Ko) =  l|tf llHH'i(n) +  2 jjk
a

dxj dxk L2(0)

Then the solution T  belongs to H H '2 (£i) and we can introduce the operator 
G as in (2.5), with G : H i (aQ) -> H H '2 (Ü).

Now, let us consider the operator B =  Gy (x0 • V (where y is the trace 
operator); B : HH ' 2 (Q) -> H H '2 (O). If the components of [l0 and their first 
derivatives have a sufficiently small maximum on aO;> the norm of B can be 
made small enough to be able to apply the fixed point theorem. In this way 
we find a weak solution of the problem in almost spherical approximation that 
belongs to H H '2 (ti), and our problem has a solution with the required regu
larity conditions.

In a following note we shall prove by a different and more direct approach 
that, even if we require only ü e ^ ’1, which is more natural in geodetic 
problems, a weak solution can be found; in this case, however, we can prove 
only a weaker regularity result, i.e. VT | Qe L 2(Q).

3. Solution in  a domain w ith  regular boundary

The goal of this section is to prove the theorem previously stated.
We recall that in [7] the solution T of (2.1) is found by extending to 

a harmonic function in the whole £1 the function u given on the boundary, and
I d

then by proving that the operator B-1, where B = — r —
2 dr

a one-to-one map of the space H H '1 (Q) into itself. Hence

— I, establishes

oT 2
(3.1) u e H H '1 (O) => T e HH'1 (Q) => — =  — {u —  T J g H H ^ ^ c  HîoC(Û).

dr r
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What remains to be proved is then that the non-radial components of the 
gradient of T  belong to Hjoc (Q) too. Let r —  R (0 , X) represent the boundary 
aQ ; R (0 , X) is in C1,1 in agreement with our assumption that ati e./FW»1. 
In Q we can introduce coordinates t , 0 , X in the following way

Î x = : £R (0 , X) sin 0 cos X

y  =  *R (0 , X) sin 0 sin X 1 <  t <  oo

z  —  ?R (0 , X) cos 0 .

This transformation is not one-to-one along the polar axis; since we are 
interested only in local considerations, we can overcome this difficulty for exam
ple by dividing our domain into two subdomains and by using suitably rotated 
coordinates.

For simplicity of notation we rename x , y  , z  by x±, x2, xz and t , 0 , X 
by tl9 t2, ts. The transformation can be simply denoted as x  =  F (t). From 
the preceding remark we can assume that it is invertible, with Jacobian JF 
bounded, min | JF | > 0 ;  we denote by * =  G (jc) the inverse transformation. 
Moreover, G is of class C1,1 and, at least almost everywhere, we have
(3.3 a)

a2 w _  a2 Gi aw ^  a.G* aGz a2 w
dxj dxk / dx0 dxk atx dxj dxk dt4 dtx

(3.3b) = » a w = 2 a g , ^  +  2 v g , - . v g ,  =  Aw
i vtl t,i <y'ti dti

where w (t) =  w (F (*)).
Ov/ing to the specific form of (3.2), the following properties can easily be 

verified :

! i) J f (*) =  * M (* 2 ,* 3 )

ii) —  , j  = 1 , 2 , 3 ,  expressed as function of t, are independent of tv
dx.

dt-hi) —1 , i =  2 ,3  , j  ~  1 , 2 , 3 ,  can be written \\tx multiplied by fun-
étions of t2, ts .

a21(3.4) iv) —— j , k —  1 , 2 , 3 ,  can be written as 1/^ multiplied by fun-
dxi dXic étions of t2, ts .

92 f.
v) ------l— i —  2 , 3 ,  j  , k =  1 , 2 , 3 ,  can be written as 1/^ multiplied

dXj dXjc by functions of t2, ts

a a
vi) —  =, R (0, x) —  .

dt. dr
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Consequently (3.3a) can be written as

d2W 32 W 1 /  Z'W J* 32 w  . .. \

(3'5) l ^ d x k ” T t f  *ik ih  ’ + Y1 \ ^ t 1 h k{h ’h) +  i T ¥ ,  ° y* (*2’#s)) +

l 32o;
xSS?ft (** . *s))

where all the coefficients of the derivatives are bounded with the first and second 
derivatives of G.

Now, consider the surface 2 t ~ { £ 1 = t , t >  1}, that is internal to Q; 
as T is a harmonic function, bounded in every compact internal to Q, it is regular 
on S T.

Let us denote by AT the part in the right hand side of (3.5) that does not 
contain derivatives with respect to tv Thus the Laplace operator A is decomposed 
according to the formula

A =  L +  At ,

where L and AT are both linear second-order differential operators with bounded 
coefficients; L contains the first and second derivative with respect to tx and

3 3
the mixed derivatives —------- (/ =  2,3) .  We see that t2 At does not depend

dfy dtx
on t. Let us define T (*) = T  (F (*)) and let T t (t2, /3) be the restriction of 
f  to S T. We shall prove that the following inequality holds:

(3-6) || f  x II 2H2(D) <  e (Il t ,  II 2h i(D) +  Il t 2 At %  || 2l2(D)) «

where D e  R2 is the (bounded) domain of variation of (t2, £3); c is a costant in
dependent of T.

However what we really want to prove is that

(3.7) I 32 T
dXj  dXk

d3 x <  oo .

Let us see first that (3.6), together with (3.1), implies (3.7).
We examine (3.5), with w = T .  We already know that the terms in the 

right hand side that contain first or second derivatives with respect to tx belong

IIT|Ih2(D) J | |  T | 2 +
D

/ 32 T \2l
(1) 32 T  \ 2' dt2 d£3 .
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to L2(fi), according to (3.1) and to (3.4), vi). Hence we focus our attention 
on the last term. We have, owing to (3.6).

(3.8) f 1 g2 T 2 r , 2 r l S2 T

dti dti

IIJ*”d

L D
dt i dtX

J  (*2 » h) d *2 d*3

c max J  f  y  II f t !  I|2H1(D) +  J t\  d*, J I A,! f (l I2 d*2 dt3 (i , I =  2 , 3 )  .
1 D

The first term is easily seen to be bounded by k || T ||hh"(Q) • As for the 
second term, we recall that, being T  a harmonic function, A ^ T ^ — — LT; 
as all terms in L contain derivatives with respect to tly LT belongs to L2(£2) 
according to (3.1), and || LT ||l2(Q) is bounded by k \\u ||hh^(^) (see (3-1)). 
We have

00

(3.9) f t\ dt, f  I A. T/ I2 dt2 dt3 <  - 1 -  || LT Hlr(o) .
J J 1 1 min J
1 D

Summing up we can conclude that T  is in HH'2(Q) and its norm is bounded 
by || m Hhh' (Q) •

Now we come to the proof of (3.6), that relies on Theorem 3.1, Chap. 2 
of Lions-Magenes [3], vol. 1. There, an inequality like (3.6) is established for 
a function defined in Rm with support in a sufficiently small ball.

As we need to set up a finite covering of the set D, we must prove that in
our case we can choose the radius p of the ball and determine the constant cj
independently of the center of the ball in Dei R2. From the proof given in [3], 
we see that p and c are determined by the oscillation of the coefficients of 
the second derivatives, which by (3.3a) are products of the first derivatives of 
G, and by the magnitude of the coefficients of the first derivatives, which are 
second derivatives of G. Here the first and second derivatives of G are bounded 
on D, so that our statement is certainly true.

We introduce now a partition of unity {<Ĵ } corresponding to the finite 
covering of D.

We have T t = 2  ( ^  f  T) where the summation is finite and for any
i

inequality (3.6) holds.

(3.10) Il T IIh2(D) ^  II <KTt ||2H2(D) <  kclj ( ||(J)j T t IIh!(D) +  

+  Il t2 At (4>ì T) ||l2(d)) •
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As are bounded with their first and second derivatives, we can write 

(3-H) II f , HhI(D) <  cx y f  x ||2hi(D) ;

I! Ax (<h Tx) Hl2(D) <  (Il At f  X IIl2(D) +  II f  x IIh W  •

Introducing (3.11) into (3.10), (3.6) is easily obtained (with a constant c 
which is obviously different from c in (3.10)).

N.B. — We remark that, in performing our computations, we have re
peatedly used the boundedness of the second derivatives of R (0 , <D) in (3.2). 
Hence Q must be at least in j V' (1)’1. Of course we can use, instead of (3.2), 
a transformation that is more regular inside Q ; but, if is not regular enough, 
second derivatives are not bounded when we approach dQ.
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