ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

UMBERTO MARCONI

On uniform paracompactness of the ω_{μ} -metric spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **75** (1983), n.3-4, p. 102–105.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1983_8_75_3-4_102_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Topologia. — On uniform paracompactness of the ω_{μ} -metric spaces. Nota ^(*) di UMBERTO MARCONI, presentata dal Socio G. SCORZA DRAGONI.

RIASSUNTO. — Gli spazi ω_{μ} -metrici uniformemente numerabilmente paracompatti sono uniformemente paracompatti. Si fornisce altresì una caratterizzazione degli spazi ω_{μ} -metrici fini.

0. INTRODUCTION

A uniform space X is said to be uniformly paracompact if every directed (= closed under finite union) open covering is uniform; it is said to be uniformly countably paracompact if every directed countable open cover is uniform (see [R], [H₁], [M]). In [H₂] it is proved that in the realm of metric spaces these two concepts coincide. We will extend this result to ω_{μ} -metric spaces. An ω_{μ} -metric space is a uniform space which admits a base of uniform coverings

$$\mathscr{B} = \{\mathscr{U}_{\alpha} : \alpha < \omega_{\mu}\}$$

well ordered (by star-refinement) by a regular cardinal ω_{μ} ; if $\mu > 0$ it is easy to prove that coverings \mathscr{U}_{α} may be assumed to be clopen partitions.

In section 1 it is proved that if $\mu > 0$, ω_{μ} -metric spaces uniformly countably paracompact are uniformly paracompact. In section 2 fine ω_{μ} -metric spaces are characterized.

1. Results

In this section only ω_{μ} -metric spaces with $\mu > 0$ are considered. In this case a point with a compact neighbourhood is an isolated point.

PROPOSITION 1.1. Let X be an ω_{μ} -metric space topologically discrete (=locally compact). If X is uniformly countably paracompact, then X is uniformly locally compact, that is there exists a uniform covering made by finite (compact) sets.

(*) Pervenuta all'Accademia il 19 ottobre 1983.

Proof. If X isn't uniformly locally compact, for every $\alpha < \omega_{\mu}$ we can define by induction a countable infinite subset N_{α} of X and an ordinal $f(\alpha)$ such that:

- 1) $\alpha \leq f(\alpha) < \omega_{\mu};$
- 2) $\alpha \neq \beta \Rightarrow N_{\alpha} \cap N_{\beta} = \emptyset$

3) there exists an element $U_{\alpha} \in \mathscr{U}_{f(\alpha)}$ such that $N_{\alpha} \subset U_{\alpha}$.

Let f(0) = 0, U_0 an infinite element of \mathcal{U}_0 and N_0 a countable infinite subset of U_0 .

Let $\alpha < \omega_{\mu}$. If $f(\beta)$ and N_{β} are defined for every $\beta < \alpha$, put $Y_{\alpha} = \bigcup_{\substack{\beta < \alpha \\ \beta < \alpha}} N_{\beta}$. Since $|Y_{\alpha}| < \omega_{\mu}$ and X is discrete, the covering $\{X \setminus Y, \{y\}: y \in Y_{\alpha}\}$ is uniform; i.e. it has a refinement $\mathscr{U}_{f(\alpha)} \in \mathscr{B}$, with $f(\alpha) \ge \alpha$. Let U_{α} be an infinite element of $\mathscr{U}_{f(\alpha)}$ and N_{α} a countable infinite subset of $U_{f(\alpha)}$.

Put $N_{\alpha} = \{x_n^{\alpha} : n \in \omega\}.$

For every $n \in \omega$, let $C_n = \{x_k^{\alpha} : k \ge n, \alpha < \omega_{\mu}\}$.

The directed countable open covering of X, $\{X \setminus C_n : n \in \omega\}$, cannot be uniform, contradicting the hypothesis.

PROPOSITION 1.2. Let X^d be the subset of all accumulation points of an ω_{μ} metric space X. If X is uniformly countably paracompact, then X^d is ω_{μ} -compact.

Proof. X^d , being a closed subspace of X, is uniformly countably paracompact. Therefore X^d can be supposed to coincide with X.

An ω_{μ} -metric space is ultraparacompact (see [AM]). Therefore, if X isn't ω_{μ} -compact, there exists a partition of clopen sets $\mathscr{P} = \{A_{\beta} : \beta < \omega_{\mu}\}$ of cardinal ω_{μ} . We can choose an increasing mapping $\alpha \colon \omega_{\mu} \to \omega_{\mu}$ such that for every $\beta < \omega_{\mu}$ there exists an element $U_{\alpha(\beta)} \in \mathscr{U}_{\alpha(\beta)}$ such that $U_{\alpha(\beta)} \subset A_{\beta}$.

Obviously $U_{\alpha(\beta)}$ contains a countably infinite subset $N_{\beta} := \{x_n^{\beta} : n \in \omega\}$.

Each N_{β} is closed and discrete, $N_{\beta} \subset A_{\beta}$, and $\{A_{\beta} : \beta < \omega_{\mu}\}$ is a clopen partition; it follows that $N = \bigcup_{\beta < \omega_{\mu}} N_{\beta}$ is closed and discrete. But $U_{\alpha(\beta)} \cap N = N_{\beta}$

is infinite for each $\beta < \omega_{\mu}$, contradicting Prop. 1.1.

Now we can prove the main result.

THEOREM 1.1. Let X be an ω_{μ} -metric space. The following conditions are equivalent:

1) X is uniformly countably paracompact;

2) there exists an ω_{μ} -compact subset K of X such that for every $\alpha < \omega_{\mu}$ the subset $X \setminus St(K, \mathcal{U}_{\alpha})$ is uniformly locally compact;

3) X is uniformly paracompact.

Proof. $1 \Rightarrow 2$. Let $K = X^d$ be the derived set of X. By Proposition 1.2, K is ω_{μ} -compact. For every $\alpha < \omega_{\mu}$ the closed subspace $X \searrow St(K, \mathcal{U}_{\alpha})$,

being topologically discrete and uniformly countably paracompact, is uniformly locally compact (Prop. 1.1).

 $2 \Rightarrow 3$. Let $\mathscr{A} = \{A_{\gamma} : \gamma \in \Gamma\}$ be a directed open covering. For every $x \in K$, there exists a covering $\mathscr{U}_{\alpha(x)} \in \mathscr{B}$ such that $\operatorname{St}(x, \mathscr{U}_{\alpha(x)}) \subset A_{\gamma}$ for some $\gamma \in \Gamma$. The covering of K, $\{\operatorname{St}(x, \mathscr{U}_{\alpha(x)}) : x \in K\}$ has a subcovering of cardinal less than ω_{μ} , say $\mathscr{V} = \{\operatorname{St}(y, \mathscr{U}_{\alpha(y)}) : y \in Y, \text{ with } Y \subset K, |Y| < \omega_{\mu}\}.$

Let $\alpha = \sup \{ \alpha(y) : y \in Y \}$. If $U \in \mathscr{U}_{\alpha}$ and $U \cap K \neq \emptyset$, there exists a point $y \in Y$ such that $U \subset St(y, \mathscr{U}_{\alpha(y)})$, because \mathscr{U}_{α} is a refinement of all partitions $\mathscr{U}_{\alpha(y)}$. Therefore the family $\{U \in \mathscr{U}_{\alpha} : U \cap K \neq \emptyset\}$ is a refinement of the family $\{A_{\gamma} \in \mathscr{A} : A_{\gamma} \cap K \neq \emptyset\}$.

Consider $X \setminus St(K, \mathscr{U}_{\alpha})$. By hypothesis, there exists an index β , $\alpha < < \beta < \omega_{\mu}$, such that the set $St(p, \mathscr{U}_{\beta}) \cap (X \setminus St(K, \mathscr{U}_{\alpha})) = St(p, \mathscr{U}_{\beta})$ is finite (last equality holds because \mathscr{U}_{β} is a refinement of the partition \mathscr{U}_{α}).

It is easy to conclude that \mathscr{U}_{β} is the required uniform refinement of \mathscr{A} . $3 \Rightarrow 1$. Obvious.

2. Fine ω_{μ} -metric spaces

A uniform space X topologically paracompact is fine if every open covering is uniform. It is easy to prove that an ω_{μ} -compact ω_{μ} -metric space is fine ([R] Th. 5.2). Since a paracompact fine uniform space is uniformly paracompact, Proposition 1.2 implies the following:

PROPOSITION 2.1. Let X be an ω_{μ} -metric space without isolated points. The following conditions are equivalent:

- 1) X is ω_{μ} -compact;
- 2) X is fine.

It is easy to prove that Proposition 2.1 holds also for metric spaces $(\omega_{\mu} = \omega)$. In fact, if a metric space (X, d) isn't compact, there exists a closed infinite discrete subset $\{x_n : n \in \omega\}$. If the points x_n are accumulation points, for every $n \in \omega$ there exists a point $y_n \in X$ with $0 < d(x_n, y_n) < \frac{1}{n}$. Then the discrete subset $\{x_n : n \in \omega\} \cup \{y_n : n \in \omega\}$ cannot be uniformly discrete, and therefore the space (X, d) cannot be fine.

The following theorem provides a characterization of fine ω_{μ} -metric spaces (here ω_{μ} can be equal to ω).

THEOREM 2.1. Let X be an ω_{μ} -metric space. The following conditions are equivalent :

1) X is fine;

2) There exists an ω_{μ} -compact subset K of X such that for every $\alpha < \omega_{\mu}$ the subspace $X \setminus St(K, \mathcal{A}_{\alpha})$ is uniformly discrete.

Proof. $1 \Rightarrow 2$. Put $K = X^d$. By Proposition 2.1, K is ω_{μ} -compact. Let $\alpha < \omega_{\mu}$.

Since the discrete subspace $X \setminus St (K, \mathscr{U}_{\alpha})$ is closed, it is fine, thus uniformly discrete.

 $2 \Rightarrow 1$. Let \mathscr{A} be an open covering of X. By ω_{μ} -compactness of K, there exists a covering $\mathscr{U}_{\alpha} \in \mathscr{B}$ such that for every $x \in K$ the St $(x, \mathscr{U}_{\alpha})$ is contained in some element of \mathscr{A} . Since $X \setminus St (K, \mathscr{U}_{\alpha+2})$ is uniformly discrete, there exists a covering $\mathscr{U}_{\beta} \in \mathscr{B}$ with $\alpha + 2 \leq \beta$, such that St $(p, \mathscr{U}_{\beta}) \cap X \setminus St (K, \mathscr{U}_{\alpha+2}) = \{p\}$ for every $p \notin St (K, \mathscr{U}_{\alpha+2})$. Then for every $p \notin St (K, \mathscr{U}_{\alpha+1})$ we have $\{p\} = St (p, \mathscr{U}_{\beta})$. Therefore the open cover of $X, \mathscr{V} = \{St (x, \mathscr{U}_{\alpha}): x \in K\} \cup \{St (p, \mathscr{U}_{\beta}): p \notin St (K, \mathscr{U}_{\alpha+1})\}$, is a uniform refinement of \mathscr{A} , since it it is refined by \mathscr{U}_{β} .

References

- [AM] ARTICO G. and MORESCO R. (1982) ω_μ-additive topological spaces, «Rend. Sem. Mat. Univ. Padova», 67, 131-141.
- [H₁] HOHTI A. (1981) On uniform paracompactness, «Ann. Acad. Sc. Fenn.», ser A, « Math. Diss.», 36.
- [HI] HOHTI A. (1981) A theorem on uniform paracompactness, Gen. Top. and its relations to ..., 5, Proc. Fifth Prague Topological Symp., 384-386.
- ISBELL J.R. (1964) Uniform spaces, «Math. Surveys», 12, «Amer. Math. Soc.», Providence, Rhod Island. 1964.
- [R] REICHEL H.C. (1978) Some results on uniform spaces with linearly ordered bases, «Fund. Math.», 98, 25-39.