Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Enrico Magenes, Claudio Verdi, Augusto Visintin

Semigroup approach to the Stefan problem with non-linear flux

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 75 (1983), n.1-2, p. 24-33.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1983_8_75_1-2_24_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni a derivate parziali. - Semigroup approach to the Stefan problem with non-linear flux. Nota (*) di Enrico Magenes (**), Claudio Verdi ${ }^{(* * *)}$ e Augusto Visintin ${ }^{(* * *)}$, presentata dal Corrisp. E. Magenes.

Abstract

Riassunto. - Un problema di Stefan a due fasi con condizione di flusso non lineare sulla parte fissa della frontiera è affrontato mediante la teoria dei semigruppi di contrazione in L^{1}. Si dimostra l'esistenza e l'unicità della soluzione nel senso di Crandall-Liggett e Bénilan.

Here we study the two-phase Stefan problem in more space variables with a non-linear flux condition on the fixed boundary. Denoting the space domain by Ω and the enthalpy density by u, we have a problem of the form

$$
\text { (P) } \begin{cases}\frac{\partial u}{\partial t}-\Delta \beta(u)=f & \text { in } \Omega \times] 0, \mathrm{~T}[\\ \frac{\partial \beta(u)}{\partial \nu}+g(\beta(u))=0 & \text { on } \partial \Omega \times] 0, \mathrm{~T}[\\ u(0)=u_{0} & \text { in } \Omega ;\end{cases}
$$

the non-decreasing function β is characteristic of the material, $\beta(u)$ represents the temperature, f is a datum and g is a given (in general non-linear) function, as for the classical Stefan-Boltzmann radiation law.

Following the classical variational formulation in $\mathrm{L}^{2}(\Omega)$ (for a discussion and further references see [12], e.g.), problem (P) has been recently studied in [5, 14, 15]. Here we use an approach based on the theory of non-linear contraction semigroups in $L^{1}(\Omega)$, following ideas and techniques used
(*) Pervenuta all'Accademia il 14 luglio 1983.
(**) Dipartimento di Matematica dell'Università di Pavia e Istituto di Analisi Numerica del C.N.R. di Pavia.
(***) Istituto di Matematica, Informatica e Sistemistica della Universita di Udine.
(***) Istituto di Analisi Numerica del C.N.R. di Pavia.
for similar problems in $[2,3,4,7,8,9]$. We show that the operator $A w=-\Delta \beta(w)$ with domain

$$
\begin{gathered}
\mathrm{D}(\mathrm{~A})=\left\{w \in \mathrm{~L}^{1}(\Omega) \mid \beta(w) \in \mathrm{W}^{1,1}(\Omega), \Delta \beta(w) \in \mathrm{L}^{1}(\Omega), \frac{\partial \beta(w)}{\partial v}+\right. \\
+g(\beta(w))=0 \text { on } \Gamma\}
\end{gathered}
$$

generates a contraction semigroup in $L^{1}(\Omega)$; this yields the existence and uniqueness of the generalized solution of problem (P) in the sense of CrandallLiggett and Bénilan. This approach seems especially useful for the numerical solution (see [3, 13]).

§1. The case of no internal source $(f=0)$

Let $\Omega \subset \mathbf{R}^{N}$ be a bounded regular domain for instance of class C^{∞}, with boundary Γ. Let

$$
\left\{\begin{array}{l}
\beta: \mathbf{R} \rightarrow \mathbf{R} \quad \text { Lipschitz-continuous and non-decreasing, } \beta(0)=0 \tag{1}\\
|\beta(\xi)| \geqq \mathrm{C}_{1}|\xi|-\mathrm{C}_{2} \quad \forall \xi \in \mathbf{R}\left(\mathrm{C}_{1}, \mathrm{C}_{2}: \text { positive constants }\right)
\end{array}\right.
$$

(it is not restrictive to assume that the Lipschitz-constant of β is 1)

$$
\left\{\begin{array}{l}
g \in \mathrm{C}^{1}(\mathbf{R}) \text { non-decreasing, } g(0)=0 \tag{2}\\
|g(\xi)| \leqq \mathrm{C}_{3}|\xi|+\mathrm{C}_{4} \quad \forall \xi \in \mathbf{R}\left(\mathrm{C}_{3}, \mathrm{C}_{4}: \text { positive constants }\right)
\end{array}\right.
$$

(an explicit dependence of g on $\sigma \in \Gamma$ would cause no further difficulty).
We introduce the non-linear operator $A: w \rightarrow \Delta \beta(w)$ with domain

$$
\begin{gathered}
\mathrm{D}(\mathrm{~A})=\left\{w \in \mathrm{~L}^{1}(\Omega) \mid \beta(w) \in \mathrm{W}^{1,1}(\Omega)\right. \\
\left.\Delta \beta(w) \in \mathrm{L}^{1}(\Omega) \quad \text { and } \frac{\partial \beta(w)}{\partial v}+g(\beta(w))=0 \text { on } \Gamma\right\}
\end{gathered}
$$

Here the trace $\beta(w)$ and the external normal trace $\frac{\partial \beta(w)}{\partial v}$ are understood in the sense of Gagliardo (see [10] e.g.) and are in $\mathrm{L}^{1}(\Gamma)$; by the growth assumption on g, also $g(\beta(w)) \in \mathrm{L}^{1}(\Gamma)$. The condition on Γ can also be written in the form

$$
\begin{equation*}
\int_{\Omega} \nabla \beta(w) \cdot \nabla v \mathrm{~d} x+\int_{\Gamma} g(\beta(w)) \cdot v \mathrm{~d} \sigma=-\int_{\Omega} \Delta \beta(w) \cdot v \mathrm{~d} \mathfrak{c} \forall v \in \mathrm{C}^{1}(\bar{\Omega}) \tag{3}
\end{equation*}
$$

Theorem 1. A is m-accretive in $\mathrm{L}^{1}(\Omega)$, that is
(4)

$$
\left\{\begin{array}{l}
\forall f \in \mathrm{~L}^{1}(\Omega), \forall \lambda>0, \exists!w \in \mathrm{D}(\mathrm{~A}) \text { such that } \\
w-\lambda \Delta \beta(w)=f \quad \text { a.e. in } \Omega, \text { i.e. } \\
\int_{\Omega} w \cdot v \mathrm{~d} x+\lambda \int_{\Omega} \nabla \beta(w) \cdot \nabla v \mathrm{~d} x+\lambda \int_{\Gamma} g(\beta(w)) \cdot v \mathrm{~d} \sigma=\int_{\Omega} f \cdot v \mathrm{~d} x \forall v \in \mathrm{C}^{1}(\bar{\Omega}), \\
\quad \forall \lambda>0,(\mathrm{I}+\lambda \mathrm{A})^{-1} \text { is a contraction in } \mathrm{L}^{1}(\Omega)(\mathrm{I} \equiv \text { Identity }) . \tag{5}
\end{array}\right.
$$

Proof. This is split into several steps.
(i) Uniqueness of the solution of (4).

Let w_{1}, w_{2} be two solutions; setting $\theta_{i}=\beta\left(w_{i}\right)(i=1,2)$ we have

$$
\begin{align*}
\theta_{i}-\lambda \Delta \theta_{i} & =f-w_{i}+\theta_{i} \equiv \Phi_{i}
\end{aligned} \quad \text { in } \Omega, ~ \begin{aligned}
-\frac{\partial \theta_{i}}{\partial v}=g\left(\theta_{i}\right) \equiv \psi_{i} & \text { on } \Gamma . \tag{6}
\end{align*}
$$

Let $\left\{\Phi_{i, n} \in \mathrm{~L}^{2}(\Omega)\right\}_{n \in \mathrm{~N}},\left\{\psi_{i, n} \in \mathrm{H}^{1 / 2}(\Gamma)\right\}_{n \in \mathrm{~N}}$ be such that $\Phi_{i, n} \rightarrow \Phi_{i}$ strongly in $\mathrm{L}^{1}(\Omega), \psi_{i, n} \rightarrow \psi_{i}$ strongly in $\mathrm{L}^{1}(\Gamma)$; by well-known results (see [11], e.g.), the elliptic problem

$$
\begin{array}{ll}
\theta_{i, n}-\lambda \Delta \theta_{i, n}=\Phi_{i, n} & \text { in } \Omega \tag{8}\\
-\frac{\partial \theta_{i, n}}{\partial v}=\psi_{i, n} & \text { on } \Gamma
\end{array}
$$

has one and only one solution $\theta_{i, n} \in \mathrm{H}^{2}(\Omega)$. By Lemma 2.3 of [4] we have

$$
\begin{equation*}
\left\|\theta_{2}-\theta_{i, n}\right\|_{W^{1,1}(\Omega)} \leqq \mathrm{C}\left(\left\|\Phi_{i, n}-\Phi_{i}\right\|_{\mathrm{L}^{1}(\Omega)}+\left\|\psi_{i, n}-\psi_{i}\right\|_{\mathrm{L}^{1}(\Gamma)}\right), \tag{10}
\end{equation*}
$$

with C constant independent of i, n; therefore

$$
\begin{equation*}
\theta_{i, n} \rightarrow \theta_{i} \quad \text { strongly in } \mathrm{W}^{1,1}(\Omega) \quad \text { as } n \rightarrow \infty . \tag{11}
\end{equation*}
$$

We approximate the Heaviside graph H as follows

$$
\begin{align*}
\left\{\mathrm{H}_{j} \in \mathrm{C}^{1}(\mathbf{R})\right\}_{j \in \mathrm{~N}}, \quad, \quad \mathrm{H}_{j}^{\prime} \geqq 0, & \mathrm{H}_{j}(\xi)=0 \text { for } \xi \leqq 0 \tag{12}\\
& \mathrm{H}_{j}(\xi)=1 \text { for } \xi \geqq \frac{1}{j} .
\end{align*}
$$

Taking the difference between (8) written for $i=1,2$ and multiplying by $\mathbf{H}_{j}\left(\theta_{1, n}-\theta_{2, n}\right)$, we get

$$
\begin{gather*}
\int_{\Omega}\left(\theta_{1, n}-\theta_{2, n}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, n}-\theta_{2, n}\right) \mathrm{d} x+\lambda \int_{\Omega} \nabla\left(\theta_{1, n}-\theta_{2, n}\right) \cdot \nabla \mathrm{H}_{j}\left(\theta_{\mathbf{1}, n}-\right. \tag{13}\\
\left.\theta_{2, n}\right) \mathrm{d} x+\lambda \int_{\Gamma}\left(\psi_{1, n}-\psi_{2, n}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, n}-\theta_{2, n}\right) \mathrm{d} \sigma=\int_{\Omega}\left(\Phi_{1, n}-\Phi_{2, n}\right) \cdot \\
\cdot \mathrm{H}_{j}\left(\theta_{\mathbf{1}, n}-\theta_{2, n}\right) \mathrm{d} x ;
\end{gather*}
$$

as $\mathrm{H}_{j}^{\prime} \geqq 0$, the second integral is non-negative; we can assume that the sequences $\left\{\Phi_{i, n}\right\}$ and $\left\{\psi_{i, n}\right\}$ are dominated by integrable functions for $i=1,2$; thus taking $n \rightarrow \infty$ in (13) we get

$$
\begin{aligned}
& \int_{\Omega}\left(\theta_{1}-\theta_{2}\right) \cdot \mathrm{H}_{j}\left(\theta_{1}-\theta_{2}\right) \mathrm{d} x+\lambda \int_{\Gamma}\left[g\left(\theta_{1}\right)-g\left(\theta_{2}\right)\right] \cdot \mathrm{H}_{j}\left(\theta_{1}-\theta_{2}\right) \mathrm{d} x \leqq \\
\leqq & \int_{\Omega}\left(\Phi_{1}-\Phi_{2}\right) \cdot \mathrm{H}_{j}\left(\theta_{1}-\theta_{2}\right) \mathrm{d} x=\int_{\Omega}\left[\left(\theta_{1}-\theta_{2}\right)-\left(w_{1}-w_{2}\right)\right] \cdot \mathrm{H}_{j}\left(\theta_{1}-\theta_{2}\right) \mathrm{d} x .
\end{aligned}
$$

The second integral is non-negative by the monotonicity of g and the second member is non-positive by the properties of β; thus taking $j \rightarrow \infty$ we get

$$
\int_{\Omega}\left(\theta_{1}-\theta_{2}\right)^{+} \mathrm{d} x \leqq 0
$$

Interchanging θ_{1} and θ_{2} we have $\theta_{1}=\theta_{2}$ a.e. in Ω, whence by (6) $w_{1}=w_{2}$ a.e. in Ω.
(ii) $\forall f \in \mathrm{~L}^{2}(\Omega), \forall \lambda>0, \exists w \in \mathrm{D}$ (A) solution of (4).

Using a standard procedure, we approach β and g by two sequences described by a positive parameter ε as follows

$$
\begin{aligned}
& \beta_{\varepsilon} \in \mathbf{C}^{\infty}(\mathbf{R}), 0<\varepsilon \leqq \beta^{\prime} \leqq 1, \quad \beta_{\varepsilon}(0)=0, \beta_{\varepsilon} \rightarrow \beta \text { uniformly in } \mathbf{R} \\
& g_{\varepsilon} \in \mathbf{C}^{\infty}(\mathbf{R}), g_{\varepsilon}^{\prime} \geq 0, g_{\varepsilon}(0)=0, g_{\varepsilon} \rightarrow g \text { uniformly in } \mathbf{R} ;
\end{aligned}
$$

we also assume that β_{ε} is uniformly Lipschitz-continuous and that g_{ε} fulfills an order of growth assumption as in (2); moreover let

$$
\begin{equation*}
f_{\varepsilon} \in \mathrm{C}^{\infty}(\mathbf{R}), f_{\varepsilon} \rightarrow f \text { strongly in } \mathrm{L}^{2}(\Omega) . \tag{14}
\end{equation*}
$$

We consider the ε-regularized problems corresponding to (4); setting $\theta_{\varepsilon} \equiv \beta_{\varepsilon}\left(w_{\varepsilon}\right), R_{\varepsilon} \equiv \beta_{\varepsilon}{ }^{-1}-I$, this can be written also in the form

$$
\begin{array}{ll}
\theta_{\varepsilon}-\lambda \Delta \theta_{\varepsilon}+R_{\varepsilon}\left(\theta_{\varepsilon}\right)=f_{\varepsilon} & \text { in } \Omega \\
\frac{\partial \theta_{\varepsilon}}{\partial v}+g_{\varepsilon}\left(\theta_{\varepsilon}\right)==0 & \text { on } \Gamma ; \tag{16}
\end{array}
$$

by well-known results (see [10], e.g.), this problem has one and only one solution $\theta_{\varepsilon} \in \mathrm{C}^{1}(\bar{\Omega})$, for instance. Multiplying (15) by θ_{ε}, by a standard procedure we get the a priori estimate
(17) $\left\|\theta_{\varepsilon}\right\|_{H^{1}(\Omega)} \leqq \mathrm{C}_{\lambda} \quad$ (constant dependent on λ but not on ε), whence $\left\|\theta_{\varepsilon}\right\|_{\mathrm{L}^{2}(\Gamma)} \leqq \mathrm{C}_{\lambda}$ and by the assumptions on g_{ε}

$$
\begin{equation*}
\left\|g_{\varepsilon}\left(\theta_{\varepsilon}\right)\right\|_{\mathrm{L}^{2}(\Gamma)} \leqq \mathrm{C}_{\lambda} \tag{18}
\end{equation*}
$$

by the assumptions on β and β_{ε}, (17) entails also

$$
\begin{equation*}
\left\|w_{\varepsilon}\right\|_{L^{2}(\Omega)} \leqq \mathrm{C}_{\lambda} \tag{19}
\end{equation*}
$$

By the previous a priori estimates there exist w, θ, η such that, possibly taking subsequences, as $\varepsilon \rightarrow 0$

$$
\begin{array}{rr}
w_{\varepsilon} \rightarrow w & \text { weakly in } \mathrm{L}^{2}(\Omega) \\
\theta_{\varepsilon} \equiv \beta_{\varepsilon}\left(w_{\varepsilon}\right) \rightarrow \theta & \text { weakly in } \mathrm{H}^{1}(\Omega) \\
g_{\varepsilon}\left(\beta_{\varepsilon}\left(w_{\varepsilon}\right)\right) \rightarrow \eta & \text { weakly in } \mathrm{L}^{2}(\Gamma) . \tag{22}
\end{array}
$$

Using standard monotonicity techniques, one can show that

$$
\begin{equation*}
\theta=\beta(w) \quad \text { a.e. in } \Omega, \eta=g(\beta(w)) \text { a.e. on } \Gamma, \tag{23}
\end{equation*}
$$

therefore taking $\varepsilon \rightarrow 0$ in (15), (16) a solution of (4) is obtained with the further regularity

$$
w \in \mathrm{~L}^{2}(\Omega), \quad \beta(w) \in \mathrm{H}^{1}(\Omega) \quad, \quad \Delta \beta(w) \in \mathrm{L}^{2}(\Omega)
$$

(iii) $\forall \lambda>0,(\mathrm{I}+\lambda \mathrm{A})^{-1}: \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega)$ is a contraction with respect to the norm of $\mathrm{L}^{1}(\Omega)$;
i.e. for any $f_{1}, f_{2} \in \mathrm{~L}^{2}(\Omega)$, denoting the corresponding solutions of (4) by w_{1}, w_{2}, we have

$$
\begin{equation*}
\left\|w_{1}-w_{2}\right\|_{\mathrm{L}^{1}(\Omega)} \leqq\left\|f_{1}-f_{2}\right\|_{\mathrm{L}_{1(\Omega)}} \tag{24}
\end{equation*}
$$

In order to prove this, we consider $f_{1, \varepsilon}, f_{2, \varepsilon}$ as in (14) and denote the corresponding solutions of (15), (16) by $w_{1, \varepsilon}, w_{2, \varepsilon}$. Taking the difference between (15) written for $i=1,2$ and multiplying by $H_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right)$, we get

$$
\begin{aligned}
& \int_{\Omega}\left(w_{1, \varepsilon}-w_{2, \varepsilon}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} x+\lambda \int_{\Omega} \nabla\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \cdot \nabla H_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} x+ \\
& \quad+\lambda \int_{\Omega}\left[g_{\varepsilon}\left(\theta_{1, \varepsilon}\right)-g_{\varepsilon}\left(\theta_{2, \varepsilon}\right)\right] \cdot \mathrm{H}_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} \sigma= \\
& \quad=\int_{\Omega}\left(f_{1, \varepsilon}-f_{2, \varepsilon}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} x
\end{aligned}
$$

whence, as the second and third integrals are non-negative,

$$
\begin{gather*}
\int_{\Omega}\left(w_{1, \varepsilon}-w_{2, \varepsilon}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} x \leqq \int_{\Omega}\left(f_{1, \varepsilon}-f_{2, \varepsilon}\right) \cdot \mathrm{H}_{j}\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right) \mathrm{d} x \leqq \tag{25}\\
\leqq\left\|f_{1, \varepsilon}-f_{2, \varepsilon}\right\|_{\mathrm{L}^{1}(\Omega)} .
\end{gather*}
$$

Note that, denoting the Heaviside graph by H, there exists $\chi \in H\left(\theta_{1, \varepsilon}-\theta_{2, \varepsilon}\right)$ such that

$$
\mathrm{H}_{j}\left(\theta_{1, \mathrm{~s}}-\theta_{2, \mathrm{~s}}\right) \rightarrow \chi \quad \text { weakly star in } \mathrm{L}^{\infty}(\Omega)
$$

by the strict monotonicity of β_{ε} we have also $\chi \in \mathrm{H}\left(w_{1, \varepsilon}-w_{\ell, \varepsilon}\right)$, hence taking $j \rightarrow \infty$ in (25) we get

$$
\begin{equation*}
\int_{\Omega}\left(w_{1, \mathrm{\varepsilon}}-w_{2, \mathrm{~s}}\right)^{+}+\mathrm{d} x \leqq\left\|f_{1, \mathrm{~s}}-f_{2, \mathrm{~s}}\right\|_{\mathrm{L}^{1}(\Omega)} \tag{26}
\end{equation*}
$$

Interchanging $w_{1, \varepsilon}$ and $w_{2, \varepsilon}$ we have

$$
\begin{equation*}
\int_{\Omega}\left(w_{2, \mathrm{~s}}-w_{1, \mathrm{~s}}\right)^{+} \mathrm{d} x \leqq\left\|f_{1, \mathrm{~s}}-f_{2, \varepsilon}\right\|_{L^{1}(\Omega)} \tag{27}
\end{equation*}
$$

and then taking $\varepsilon \rightarrow 0$ in (26), (27) we get (24).
(iv) $\forall f \in \mathrm{~L}^{1}(\Omega), \forall \lambda>0, \exists w \in \mathrm{D}(\mathrm{A})$ such that $w-\lambda \Delta \beta(w)=f$ a.e. in Ω.

Let $\left\{f_{n} \in \mathrm{~L}^{2}(\Omega)\right\}_{n \in \mathrm{~N}}, f_{n} \rightarrow f$ strongly in $\mathrm{L}^{1}(\Omega)$; denote by w_{n} the solution of (4) corresponding to f_{n}. Thus, setting $\theta_{n} \equiv \beta\left(w_{n}\right), \theta_{n} \in\left\{\theta \in \mathrm{~W}^{1,1}(\Omega) \mid \Delta \theta \in \mathrm{L}^{1}(\Omega)\right.$, $\frac{\partial \theta}{\partial \nu}+g(\theta)=0$ on $\left.\Gamma\right\}$ and

$$
\begin{equation*}
\theta_{n}-\lambda \Delta \theta_{n}=f_{n}-w_{n}+\theta_{r} \quad \text { in } \Omega \tag{28}
\end{equation*}
$$

By (iii) $\left\{w_{n}\right\}_{n \in \mathrm{~N}}$ is a Cauchy sequence in $\mathrm{L}^{1}(\Omega)$, thus there exists $w \in L^{1}(\Omega)$ such that

$$
w_{n} \rightarrow w \quad \text { strongly in } L^{1}(\Omega),
$$

whence, as β is Lipschitz-continuous, also

$$
\theta_{n}=\beta\left(w_{n}\right) \rightarrow \theta=\beta(w) \quad \text { strongly in } L^{1}(\Omega) ;
$$

therefore

$$
f_{n}-w_{n}+\theta_{n} \rightarrow f-w+\theta \quad \text { strongly in } \mathrm{L}^{1}(\Omega)
$$

and taking $n \rightarrow \infty$ in (28) we get that w solves (4) since $-\Delta$ is m-accretive in $L^{1}(\Omega)$ with domain D (see [4], e.g).
(v) $\forall \lambda>0,(\mathrm{I}+\lambda \mathrm{A})^{-1}$ is a contraction in $\mathrm{L}^{1}(\Omega)$,
i.e. $\forall f_{1}, f_{2} \in \mathrm{~L}^{1}(\Omega)$, denoting the corresponding solutions of (4) by w_{1}, w_{2},

$$
\begin{equation*}
\left\|w_{1}-w_{2}\right\|_{L^{1}(\Omega)} \leqq\left\|f_{1}-f_{2}\right\|_{L^{1}(\Omega)} \tag{29}
\end{equation*}
$$

In order to prove this, let $\left\{f_{i, n} \in \mathrm{~L}^{2}(\Omega)\right\}_{n \in \mathrm{~N}}, f_{i, n} \rightarrow f_{i}$ strongly in $\mathrm{L}^{1}(\Omega)(i=1,2)$; let $w_{i, n}$ denote the solution of (4) corresponding to $f_{i, n}$. As we proved in (iv)

$$
w_{i, n} \rightarrow w_{i} \quad \text { strongly in } L^{1}(\Omega) ;
$$

by (iii)

$$
\left\|w_{1, n}-w_{2, n}\right\|_{L^{1}(\Omega)} \leqq\left\|f_{1, n}-f_{2, n}\right\|_{L^{1}(\Omega)}
$$

and taking $n \rightarrow \infty$ we get (29).

Theorem 2. $\mathrm{D}(\mathrm{A})$ is dense in $\mathrm{L}^{1}(\Omega)$.

Proof. As
$\mathrm{D}(\mathrm{A})_{2} \equiv\left\{w \in \mathrm{~L}^{2}(\Omega) \mid \beta(w) \in \mathrm{H}^{1}(\Omega), \Delta \beta(w) \in \mathrm{L}^{2}(\Omega), \frac{\partial \beta(w)}{\partial v}+g(\beta(w))=0\right.$ on $\Gamma\} \subset \mathrm{D}(\mathrm{A})$
and the inclusion $\mathcal{D}(\Omega) \subset L^{1}(\Omega)$ is dense, it is sufficient to prove that

$$
\forall f \in \mathfrak{D}(\Omega), \quad \text { setting } w_{\lambda}=(\mathrm{I}+\lambda \mathrm{A})^{-1} f \quad \text { with } w \in \mathrm{D}(\mathrm{~A})_{2},
$$

then

$$
w_{\lambda} \rightarrow f \text { strongly in } \mathrm{L}^{2}(\Omega) \text { as } \lambda \rightarrow 0
$$

or equivalently

$$
\begin{equation*}
\lambda \Delta \beta\left(w_{\lambda}\right) \rightarrow 0 \quad \text { strongly in } L^{2}(\Omega) \tag{30}
\end{equation*}
$$

To this aim we consider the regularized problems in $\beta_{\varepsilon}, g_{\varepsilon}, f_{\varepsilon}=f$ with solutions $w_{\lambda, \varepsilon}$ and we multiply the corresponding equation (15) by $-\Delta \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)$, getting

$$
\begin{gathered}
\int_{\Omega} \nabla w_{\lambda, \varepsilon} \cdot \nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right) \mathrm{d} x+\int_{\Gamma} g_{\varepsilon}\left(\beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right) \cdot w w_{\lambda, \varepsilon} \mathrm{d} \sigma+ \\
+\lambda \int_{\Omega}\left[\Delta \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right]^{2} \mathrm{~d} x=\int_{\Omega} \nabla f \cdot \nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right) \mathrm{d} x \leqq\|\nabla f\|_{L^{2}(\Omega)}^{2} . \\
\left\|\nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right\|_{L^{2}(\Omega)} .
\end{gathered}
$$

As $g_{\varepsilon}(0)=\beta_{\varepsilon}(0)=0$ and $g_{\varepsilon}, \beta_{\varepsilon}$ are monotone, the second integral is nonnegative; moreover, by the properties of β_{ε},

$$
\int_{\Omega} \nabla w_{\lambda, \varepsilon} \cdot \nabla \beta_{\varepsilon}\left(w_{\lambda, s}\right) \mathrm{d} x \geq \int_{\Omega}\left|\nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right|^{2} \mathrm{~d} x ;
$$

hence

$$
\left\|\nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{1}+\lambda\left\|\Delta \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \leqq\|\nabla f\|_{L^{2}(\Omega)} \cdot \| \nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon} \|_{L^{2}(\Omega)}\right.
$$

whence

$$
\left\|\nabla \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right\|_{L^{2}(\Omega)} \leqq \mathrm{C} \quad \text { (constant independent of } \lambda \text { and } \varepsilon \text {) }
$$

and then also

$$
\lambda\left\|\Delta \beta_{\varepsilon}\left(w_{\lambda, \varepsilon}\right)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \leqq \mathrm{C}
$$

which yields (30).

Conclusion

The operator $\mathrm{A}: \mathrm{D}(\mathrm{A}) \rightarrow \mathrm{L}^{\mathbf{1}}(\Omega)$ generates a non-linear semigroup of contractions $\mathrm{S}(t)$, defined by Crandall-Liggett's formula (see [6]):

$$
\forall u_{0} \in \mathrm{~L}^{1}(\Omega), \mathrm{S}(t) u_{0}=\lim _{, \rightarrow \infty}\left(\mathrm{I}+\frac{t}{n} \mathrm{~A}\right)^{-n} u_{0} \text { uniformly in }[0, \mathrm{~T}]
$$

Moreover, $u(t) \equiv \mathrm{S}(t) u_{0} \in \mathrm{C}^{0}\left([0, \mathrm{~T}] ; \mathrm{L}^{1}(\Omega)\right)$ is the generalized solution in the sense of Crandall-Liggett [6] and Bénilan [1] of the abstract Cauchy problem

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}+\mathrm{A} u=0 \quad, \quad u(0)=u_{0} \tag{31}
\end{equation*}
$$

or equivalently of problem (P) (see introduction) with $f=0$.

§2. The general case $(f \neq 0)$

Let $f \in \mathrm{~L}^{1}(\Omega \times] 0, \mathrm{~T}[)$; let $f_{n}=f_{n}^{k}$ constant in $\left[k \frac{t}{n},(k+1) \frac{t}{n}[\right.$ for $k=0, \cdots, n-1$ and such that $f_{n} \rightarrow f$ strongly in $\mathrm{L}^{1}(\Omega \times] 0, \mathrm{~T}[)$. Then

$$
\forall u_{0} \in \mathrm{~L}^{1}(\Omega) \quad, \quad \mathrm{U}_{f}(t) u_{0} \equiv \lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(\mathrm{I}+\frac{t}{n}\left(\mathrm{~A}-f_{n}^{k}\right)\right)^{-1} u_{0}
$$

(uniformly in [0, T]) is the generalized solution (see [7]) of the abstract Cauchy problem

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+\mathrm{A} u=f \quad, \quad u(0)=u_{0}
$$

i.e. of problem (P) .

Remark. Under natural assumptions on u_{0} and g, the solution u of problem (P) with $f=0$ fulfills a maximum principle: $\mathrm{M}_{1} \leqq u \leqq \mathrm{M}_{2}\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right.$: constants) (by means of an argument similar to one used in [15]). This allows the removal of the assumption on the growth of g (see (2)); therefore the above results apply also to the case of a flux governed by the classical StefanBoltzmann radiation law

$$
g(\tau)=C\left(\tau^{4}-\tau_{0}^{4}\right) ;
$$

here τ denotes the absolute temperature, τ_{0} is the temperature of a source and C >0 is a physical constant.

Acknowledgement. The author are indebted to Alain Damlamian for useful discussions and suggestions.

References

[1] Рн. Bénilan (1972) - Solutions intégrales d'équations d'évolution dans un espace de Banach. «C.R. Acad. Sc.», (A) 274, 47-50.
[2] Рh. Bénilan (1972) - Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Orsay.
[3] A. E. Berger, H. Brezis, C. W. Rogers (1979) - A numerical method for solving the problem $u_{t}-\Delta f(u)=0$. "R.A.I.R.O. Num. Anal.", 13, 297-312.
[4] H. Brezis, W. A. Strauss (1973) - Semi-linear second-order elliptic equations in L1. «J. Math. Soc. Japan», 25, 565-590.
[5] J. R. Cannon, E. Di Benedetto (1980) - An n-dimensional Stefan problem with non-linear boundary conditions. «S.I.A.M. J. Math. Anal.», 11, 632-645.
[6] M. G. Crandall, T. Liggett (1971) - Generation of semi-groups of non-linear transformation on general Banach spaces. "Amer. J. Math.», 93, 265-298.
[7] M. G. Crandall, A. Pazy (1972) - Nonlinear evolution equations in Banach spaces. «Israel J. Math. », 11, 57-94.
[8] A. Damlamian (1977) - Some results in the multiphase Stefan problem. "Comm. Partial Diff. Equat.», 2 (10), 1017-1044.
[9] L. C. Evans (1978) - Application of Non-linear Semigroup Theory to Certain Partial Differential Equations. In: «Nonlinear Evolution Equations», ed. M. C. Crandall, Academic Press.
[10] O. Ladyzenskaja, N. Ural'ceva (1968) - Linear and quasilinear equations of elliptic type. Academic Press, New York.
[11] J. L. Lions, E. Magenes (1972) - Non-homogeneous boundary value problems and application. Vol. I, Springer, Berlin.
[12] E. Magenes - Problemi di Stefan bifase in più variabili spaziali. To appear on "Le Matematiche».
[13] C. Verdi (1983) - On the numerical analysis of the Stefan problem with non-linear flux. Publ. I.A.N.-C.N.R. - Pavia, n. 372.
[14] M. Niezgódia, I. Pawlow (1983) - A generalized Stefan problem in several space variables. «Appl. Math. Optim», 9, 193-224.
[15] A. Visintin (1981) - Sur le problème de Stefan avec fux non linéaire. «Boll. U.M.I., Anal. Funz. Appl." (5), 18 C (1), 63-86.

