ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Nicola Rodinò

Algebras of continuous functions over P-spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **74** (1983), n.6, p. 313–321.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1983_8_74_6_313_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1983.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 23 giugno 1983

Presiede il Presidente della Classe Giuseppe Montalenti

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Algebras of continuous functions over P-spaces. Nota di NICOLA RODINÒ, presentata (*) dal Socio G. ZAPPA.

RIASSUNTO. — Nella prima parte della nota sono studiate le proprietà di connessione dei sottospazi dello spettro di un anello. Con l'ausilio dei risultati ottenuti, si stabiliscono le condizioni necessarie e sufficienti affinchè un'algebra reale assolutamente piatta sia isomorfa ad un'algebra di funzioni continue a valori reali su un P-spazio, del quale determini la topologia. Ulteriori condizioni sono necessarie e sufficienti affinché un'algebra reale assolutamente piatta sia isomorfa all'algebra di tutte le funzioni continue su un P-spazio.

1. The question of characterizing, in an algebrical way, real algebras, which are $\mathscr{C}(X)$ for some completely regular space X, is unresolved (see survey article by A. W. Hager [1]). Here, we are concerned with the same question in the restricted class of absolutely flat algebras, obtaining the following result: an absolutely flat algebra is $\mathscr{C}(X)$, for some P-space X, if a) it has not a 'real radical' and satisfies b) a condition on ideals of a prescribed type and c) a completeness condition.

In the first part of this work, as a support for the second part, given a ring A, connectedness properties of subspaces of Spec(A) are studied.

2. Throughout this work, all rings are commutative and with an identity. Let A be a ring. As usual, we denote the set of prime ideals of A by Spec (A). Let X be contained in Spec (A). Consequently, we consider X endowed with

(*) Nella seduta del 12 marzo 1983.

22. - RENDICONTI 1983, vol. LXXIV, fasc. 6.

the Zariski relative topology. Let *a* be an ideal of A. A typical closed (resp. open) set of the Zariski topology is $V_X(a) = \{p : p \in \text{Spec}(A) \& a \subset p\}$ (resp. $D_X(a) = \{p : p \in \text{Spec}(A) \& a \not\subset p\}$). We set $_X \sqrt{a} = \bigcap_{a \subset p, p \in X} p$. It is clear that the map from the set of ideals of A into the set of closed subsets of X, defined by $a \to V_X(a)$ is onto. Furthermore, when restricted to the set of ideals *a* such that $a = _X \sqrt{a}$ this map is one-one. Note that, if Y is a subset of X, the closure \overline{Y} of Y in X is $V_X(\bigcap Y)$. We recall that, given two ideals *a* and *b* of A, (b:a) denotes the ideal of all $x \in A$ such that xa is contained in *b*.

Let a be an ideal of A and X a subset of Spec(A).

2.1. LEMMA. $\bigcap D_X(a) = (\bigcap X : a).$

Proof. Let $x \in (\bigcap X : a)$ and $p \in D_X(a)$. Take $a \in a$ so that a does not belong to p. Since xa belongs to p, x must belong to p, p being a prime ideal. We deduce that $(\bigcap X : a) \subset \bigcap D_X(a)$.

Let $x \in \bigcap D_X(a)$ and $p \in X$. The ideal xa is contained in p, since, if $a \notin p$, x belongs to p. So $\bigcap D_X(a) \subset (\bigcap X : a)$.

Let $X \subset \text{Spec}(A)$ and let *a* be an ideal of A.

2.2. DEFINITION. a is called X-large iff, for each p belonging to X, a is not contained in p.

In our notation *a* is X-large if $V_X(a) = \emptyset$.

2.3. PROPOSITION. a) An open subset $D_X(a)$ of X is closed iff $a + (\bigcap X : a)$ is X-large.

b) A closed subset $V_X(a)$ of X is open iff $a + (\bigcap X : a)$ is X-large.

Proof. a) If $D_X(a)$ is closed, then $D_X(a)$ is equal to its closure $\overline{D_X(a)} = V_X(\bigcap D_X(a))$ which, according to 2.1, is $V_X((\bigcap X : a))$. So $a + (\bigcap X : a)$ is X-large, because, if $(\bigcap X : a)$ is contained in $p \in X$, then a is not contained in p.

Let us suppose now that $a + (\bigcap X : a)$ is X-large. If $p \in V_X(\bigcap X : a)$, then $p \in D_X(a)$. This proves that $D_X(a)$ contains its closure $V_X(\bigcap X : a)$ and therefore is closed.

b) Apply a) to the open set $D_X(a)$ which is the complement of $V_X(a)$ in X and consequently is closed.

2.4. COROLLARY. A closed point p of X is isolated iff $p + (\bigcap X : p)$ is X-large.

2.5. COROLLARY. $a \in A$ is such that $V_X(a)$ is open in X iff $Aa + (\bigcap X : a)$ is X-large.

Let A be a ring, a and b ideals of A, X a subspace of Spec(A).

2.6. LEMMA $V_X(a) = V_X(b)$ implies $(\bigcap X : a) = (\bigcap X : b)$. $(\bigcap X : a) = (\bigcap X : b)$ implies $\overline{D_X(a)} = \overline{D_X(b)}$.

Proof. $V_X(a) = V_X(b) \Rightarrow D_X(a) = D_X(b) \Rightarrow \bigcap D_X(a) = \bigcap D_X(b)$. From 2.1, we conclude that $(\bigcap X : a) = (\bigcap X : b)$.

$$\overline{\mathbf{D}_{\mathbf{X}}(a)} = \mathbf{V}_{\mathbf{X}}(\bigcap \mathbf{D}_{\mathbf{X}}(a)) = \mathbf{V}_{\mathbf{X}}((\bigcap \mathbf{X}:a)) = \overline{\mathbf{D}_{\mathbf{X}}(b)}.$$

Let us suppose also that $\bigcap X = \{0\}$ and let $V_X(a)$ be a clopen subset of X.

2.7. PROPOSITION. There is an idempotent e of A such that $V_X(a) = V_X(e)$ iff Ann (a) is generated by an idempotent.

Proof. \Rightarrow) From 2.6, Ann (a) is equal to Ann (e) which is generated by the idempotent 1 - e.

⇐) Supposing Ann (a) = Af, with f idempotent, it is Ann (a) = Ann (1-f). Fom 2.6, $\overline{D_X(a)} = \overline{D_X(1-f)}$. By hypothesis $V_X(a)$ is clopen and, from b) of 2.3, $V_X(1-f)$ is also clopen (Af + A (1-f) = A). Consequently $D_X(a)$ and $D_X(1-f)$ are closed. We conclude that $D_X(a) = D_X(1-f)$ or equally $V_X(a) = V_X(1-f)$.

3. Throughout this paragraph all algebras are commutative over the real field **R** and they have an identity 1_A . Algebra morphisms are **R**-linear maps, which are also ring morphisms preserving the identities. Let A be an algebra. A character of A is an algebra morphism from A into **R**. We denote by $\chi(A)$ the set of all characters of A. There is a natural map $\Phi : \chi(A) \rightarrow \Im \operatorname{Spec}(A)$ defined by $\Phi(\varkappa) = \operatorname{Ker} \varkappa$. The coarsest topology on $\chi(A)$ for which the map Φ is continuous, is called the Zariski topology of $\chi(A)$. Since the map Φ is one-one, all results, stated about subspaces of Spec (A) in 2 §, have a natural translation in results about subspaces of $\chi(A)$. Also definitions have a natural translation: when we say that an ideal a is X-large, we mean that, for each $\varkappa \in X$, a is not contained in Ker \varkappa ; analogously, if a is an ideal of A, we put $\chi \sqrt{a} = \bigcap_{a \in \operatorname{Ker} \varkappa, \varkappa \in X} \operatorname{Ker} \varkappa$. Let $X \subset \chi(A)$.

When it is not otherwise clearly indicated, we always consider X endowed with the Zariski relative topology and, for each ideal a of A, we use the following notation to denote the closed (resp. open) subsets of $X: V_X(a) = \{x \in X : a \subset \text{Ker } x\}$ (resp. $D_X(a) = \{x \in X : a \notin \text{Ker } x\}$). Let A be an algebra and $X \subset \chi(A)$. The Gelfand map $\mathscr{G}_X : A \to \mathbb{R}^X$ is the algebra morphism defined by the formula: $\mathscr{G}_X(a) \cdot x = x(a)$, [2, Ch. 1, § 1, n° 5]. When the context is not ambiguous, we use the simpler notation $\hat{a} = \mathscr{G}_X(a)$ and we call the map $\hat{a}: X \to \mathbb{R}$ the Gelfand transform of a on X. V_X (a) is just the zero-set of \hat{a} on X and consequently the kernel of \mathscr{G}_X is $\bigcap_{x \in X} \text{Ker } x = \{a \in A : V_X(a) = X\}$. Let A be an algebra and let X be contained in $\chi(A)$.

3.1. PROPOSITION. The Gelfand transforms of the elements of A on X are locally constant iff, for each $a \in A$, the ideal $Aa + (\bigcap_{x \in X} Ker x : a)$ is X-large.

Proof. ⇒) Let $a \in A$. If \hat{a} is locally constant, then the closed set $\hat{a}^{-1}(0) = V_X(Aa)$ is open, hence 2.5 implies that $Aa + (\bigcap_{\varkappa \in X} \operatorname{Ker} \varkappa : a)$ is X-large.

⇐) We have to show that, for each $r \in \mathbf{R}$, $\hat{a}^{-1}(r)$ is open. We have $\hat{a}^{-1}(r) = \mathscr{G}_{X}(a - r \mathbf{1}_{A})^{-1}(0) = V_{X}(a - r \mathbf{1}_{A})$. In fact, $\hat{a}(x) = r$ means that x(a) = r or analogously that $0 = x(a) - r = x(a - r \mathbf{1}_{A}) = \mathscr{G}_{X}(a - r \mathbf{1}_{A}) \cdot x$. By hypothesis, the ideal $A(a - r \mathbf{1}_{A}) + (\bigcap_{x \in X} \operatorname{Ker} x : a - r \mathbf{1}_{A})$ is X-large. According to 2.5, the closed set $V_{X}(a - r \mathbf{1}_{A})$, which is equal to $\hat{a}^{-1}(r)$, is open.

Let A be an algebra and $X \subset X(A)$. The A-weak topology on X is the coarsest one for which every \hat{a} , $a \in A$, is a continuous function on X, [3, 3.3, p. 38]. Below, we summarize some properties in a lemma.

3.2. LEMMA. Let $X \subset X(A)$. The following assertions about X are true:

a) The A-weak topology is Hausdorff.

b) The Zariski topology is coarser than the A-weak one.

c) The Zariski and the A-weak topologies coincide iff separates points from A-weakly closed sets. Furthermore, when the two topologies coincide, they are completely regular.

d) Suppose $\bigcap_{x \in X} Ker x = \{0\}$. If Aa + Ann(a) is X-large for each $a \in A$, then the Zariski and the A-weak topologies coincide and they have $\{V_X(a) : a \in A\}$ as a base of open sets.

Proof. a) Let \varkappa , $\lambda \in X$. If $\varkappa \neq \lambda$, then Ker $\varkappa \neq$ Ker λ . Take $a \in$ Ker \varkappa , $a \notin$ Ker λ . It is $\hat{a}(\varkappa) = 0 \neq \hat{a}(\lambda)$. Hence the set of functions \hat{A} separates points in X and consequently, in the A-weak topology, X is Hausdorff.

b) Let $V_X(a)$ a Zariski closed subset of X. It is $V_X(a) = \bigcap_{a \in a} V_X(a) = \bigcap_{a \in a} \hat{a}^{-1}(0)$. Since each $\hat{a}^{-1}(0)$ is A-weakly closed, $V_X(a)$ is also A-weakly closed.

c) \Rightarrow) Let $\varkappa \notin F$, F A-weakly closed. The assumption F Zariski closed implies that $F = V_X(a)$, for some ideal a of A. Since $\varkappa \notin F$, there is $a \in a$

with $\kappa(a) \neq 0$. The Gelfand transform of $a/\kappa(a)$ on X is zero on F and takes the value 1 at κ .

(a) From b), it is enough to show that every A-weakly closed subset F is Zariski closed. By hypothesis, for each $x \in \mathbf{C}_X F$, there is $a_x \in \mathbf{A}$ with $\hat{a}_x(x) = 1$ and $\hat{a}_x \equiv 0$ on F. Clearly $\mathbf{F} = \bigcap_{x \notin F} V_X(\mathbf{a}_x)$. Thus F, as intersection of Zariski closed sets, in Zariski closed too. The last assertion of c) is trivial.

$$\begin{aligned} \mathsf{D}_{\mathbf{X}}\left(\mathbf{a}\right) &= \{\mathbf{x} \in \mathbf{X} : \mathbf{x}\left(\mathbf{a}\right) \neq 0\} = \{\mathbf{x} \in \mathbf{X} : \hat{\mathbf{a}}\left(\mathbf{x}\right) \neq 0\} = \bigcup_{r \neq 0} \{\mathbf{x} \in \mathbf{X} : \hat{\mathbf{a}}\left(\mathbf{x}\right) = r\} = \\ &= \bigcup_{r \neq 0} \{\mathbf{x} \in \mathbf{X} : \mathscr{G}_{\mathbf{X}}\left(\mathbf{a} - r \mathbf{1}_{\mathbf{A}}\right) \cdot \mathbf{x} = 0\} = \bigcup_{r \neq 0} \mathbf{V}_{\mathbf{X}}\left(\mathbf{a} - r \mathbf{1}_{\mathbf{A}}\right). \end{aligned}$$

It is well known that the family $(D_X(a))_{a \in A}$ is a Zariski base of open sets [4, Ch. 1, Ex. 17]. Since according to 2.5 $V_X(a)$ is open for each $a \in A$, $(V_X(a))_{a \in A}$ is also a Zariski base of open sets. Apparently the family $(\hat{a}^{-1}(]s, t[))_{a \in A, s, t \in R}$ is a sub-base for the A-weak topology of X. Observe that $\hat{a}^{-1}(]s, t[) = \bigcup_{s < r < t} V_X(a - r \mathbf{1}_A)$. Therefore the two topologies are equal.

Let A be an algebra and $X \subset X(A)$.

3.3. DEFINITION. A is said to be regular on X if the Zariski and the A-weak topologies on X are coincident.

3.4. DEFINITION. A character \times of A is said to be good if for each countably generated ideal $a \subset \text{Ker } \times$, there is $a \in A$ with $a \subset \sqrt[3]{\text{Aa}} \subset \text{Ker } \times$. $X_g(A)$ is the set of good characters of A.

Recall that a P-space is a completely regular space in which every G_{δ} is open [3, 4 J, p. 62].

3.5. PROPOSITION. Let A be an algebra regular on $X \subset X(A)$, $\bigcap_{x \in X} Ker x = 0$. X, endowed with the Zariski topology, is a P-space iff:

a) For each $a \in A$, Aa + Ann(a) is X-large.

b) Every character belonging to X is good.

Proof. ⇒) Since X is a P-space, every continuous function on X is locally constant [3, 4J, p. 63]. In particular, for each $a \in A$, \hat{a} is locally constant on X. From 3.1, a) is proved. Let *a* be a countably generated ideal of A, contained in Ker \varkappa , $\varkappa \in X$. Let the family $(a_n)_{n \in N}$ generate *a*. For each $n \in \mathbb{N}$, $V_X(a_n)$ is open. Since $V_X(a) = \bigcap_{n \in \mathbb{N}} V_X(a_n)$, $V_X(a)$ is a G_δ and hence an open neighborhood of \varkappa . From 3.2, d), there is $a \in A$, so that $V_X(a)$ is a neighbourhood of \varkappa contained in $V_X(a)$. Thus we have $\varkappa \in V_X(a) \subset V_X(a)$ and consequently $a \subset \sqrt[X]{a \subset X} \sqrt[X]{Aa \subset Ker \varkappa}$. This proves that \varkappa is good.

(=) Let X be a set of good characters of A and suppose that a) is valid. From 3.2, c), X is completely regular. To prove that X is a P-space, it is enough to show that the intersection of a countable family $(V_X(a_n))_{n \in \mathbb{N}}$ of neighbourhoods of a point \times of X, is also a neighbourhood of X. In fact, from 3.2, d), the family $(V_X(a))_{a \in \text{Ker} \times}$ is a neighbourhood base at \times . Let *a* be the ideal generated by the family $(a_n)_{n \in \mathbb{N}}$. Since \times is good, there is $a \in \text{Ker} \times$ such that $a \subset \sqrt[X]{Aa}$ or equally $V_X(a) \subset V_X(a)$. $V_X(a)$ is open and so the proposition is demonstrated.

Remember that an algebra is said to be absolutely flat (also Von Neumann regular) if every principal ideal is generated by an idempotent [4, Ch. 2, Ex. 27].

3.6. LEMMA. Let A be an absolutely flat algebra and

$$X \subset \mathbf{X}(A)$$
, $\bigcap_{\varkappa \in X} Ker \varkappa := \{0\}.$

For each $a \in A$, then:

- a) Aa + Ann(a) is X-large.
- b) $\sqrt{Aa} = Aa$.

Proof. Let e be an idempotent of A so that Aa = Ae.

a) Since Ann $(e) = A (1_A - e)$, Aa + Ann (a) = A.

b) Since $Aa \subset x\sqrt[3]{Aa}$, we have to show only that $x\sqrt[3]{Aa} \subset Aa$. Let $x \in x\sqrt[3]{Aa}$. We claim that x = xe. For each $x \in X(A)$, x(e) is an idempotent of **R** and consequently it must be 0 or 1. For each $x \in X$, $x(x - xe) = x(x) \times (1_A - e) = 0$, because, if x(e) = 0, then x(x) = 0. Since by hypothesis $\bigcap_{x \in X} Ker x = \{0\}$, we conclude that x - xe = 0.

3.7. LEMMA. Let A be an absolutely flat algebra and $X \subset X(A)$, $\bigcap Ker \varkappa = \{0\}$.

a) A is regular on X:

b) A character \varkappa of A is good if every countably generated ideal contained in Ker \varkappa is contained in a principal one contained in Ker \varkappa .

Proof. a) from 3.6, a) and 3.2, d). b) from 3.6, b).

Before going on, we want to point out some facts. Let X be a topological space and A an algebra of continuous functions on X, separating points in X. For each x in X, let δ_x be the character of A defined by $\delta_x(a) = a(x)$. The map $\delta : x \to \delta_x$ from X into χ (A) is one-one, for A separates points in X. Furthermore, when χ (A) is endowed with the A-weak topology, δ is continuous and is an embedding if A determines the topology of X. We denote by $\mathscr{C}(X)$ the algebra of continuous functions on X.

Let A be an absolutely flat algebra.

3.8. THEOREM. A is isomorphic to a subalgebra A' of $\mathscr{C}(X)$, for some P-space X, whose topology A' determines, iff $\bigcap_{x \in X_g(A)} \operatorname{Ker} x = \{0\}$.

Proof. ⇒) To simplify the notation, consider A as a subalgebra of $\mathscr{C}(X)$. Since A determines the topology of X, the map $\delta : X \to \chi(A)$ is an embedding and consequently $\delta(X)$ is a P-space. From 3.7, a), A is regular on $\delta(X)$. Apply 3.5 to deduce that every character δ_x is good. If $a \in \bigcap_{x \in X_g(A)} \text{Ker } x$, then, for each $x \in X$, $\delta_x(a) = a(x) = 0$. Therefore, a = 0.

 $\Leftarrow) \quad \text{If} \bigcap_{\varkappa \in X_g(A)} \text{Ker } \varkappa = 0, \text{ then the Gelfand map } \mathscr{G}_{\chi_g(A)} : A \to \hat{A} \text{ is an isomorphism. So } \hat{A} \text{ is absolutely flat and from 3.7, a), } \hat{A} \text{ is regular on } X_g(A). \text{ Since a) and b) of 3.5 are trivially fulfilled, } X_g(A) \text{ is a P-space.}$

Remember that a real compact space X is a completely regular topological space such that the map $\delta : X \to \chi(\mathscr{C}(X))$ is onto [3, Ch. 9, p. 114].

Let A be an absolutely flat algebra and $(e_{\lambda})_{\lambda \in L}$ a family of mutually orthogonal idempotents of A, generating a $\chi(A)$ -large ideal. Consider the linear topology on A, for which the set of ideal Ann $((e_{\lambda})_{\lambda \in F})$, where F is a finite subset of L, is a neighbourhood base at 0. A is said to satisfy the *completeness condition* if it is complete, whenever endowed with a topology of the type described above.

3.9. THEOREM. Let A be an absolutely flat algebra. A is isomorphic to $\mathscr{C}(X)$, for some realcompact P-space X iff:

a) $\chi(\mathbf{A}) := \chi_g(\mathbf{A})$ and $\bigcap_{\mathbf{x} \in \chi(\mathbf{A})} \operatorname{Ker} \mathbf{x} := \{0\}.$

b) For each ideal a of A, a + Ann(a) is $\chi(A)$ -large implies that Ann(a) is principal.

c) A satisfies the completeness condition.

Proof. \Rightarrow) For simplicity, let us suppose that $A = \mathscr{C}(X)$.

a) From 3.8, a fortiori $\bigcap_{x \in \chi(A)} \text{Ker } x = \{0\}$. From 3.7 a), A is regular on $\chi(A)$, i.e. the A-weak topology on $\chi(A)$ reduces to the Zariski topology. Consider $\chi(A)$ provided with the Zariski topology. Since X is completely regular, A determines the topology of X. By hypothesis, the map $\delta : X \to \chi(A)$ is onto. Consequently δ is an homeomorphism and $\chi(A)$ is a P-space. By 3.5, $\chi(A) = \chi_g(A)$.

b) If a + Ann(a) is $\chi(A)$ -large, from 2.3, D(a) is clopen (now and in the sequel, we omit subscripts in denoting closed or open subsets of $\chi(A)$). Let e be the characteristic function of $\delta^{-1}(D(a))$. Since $\delta^{-1}(D(a))$ is clopen,

e is a continuous function and so it belongs to A. It is V(e) = V(a) because of the following equivalences: $\delta_x \in V(e) \iff \delta_x(e) = 0 \iff e(x) = 0 \iff \Leftrightarrow \Leftrightarrow x \notin \delta^{-1}(D(a)) \iff \delta_x \notin D(a) \iff \delta_x \in V(a)$. Apply proposition 2.7 to deduce b).

c) Let $(e_{\lambda})_{\lambda \in L}$ be a family of two by two orthogonal idempotents of A, generating a $\chi(A)$ -large ideal a. Endow A with the linear topology, which has the neighbourhood base at 0 consisting of the ideals Ann $((e_{\lambda})_{\lambda \in M})$ for each finite $M \subset L$. Since X is a P-space, for each $\lambda \in L$, the set e_{λ}^{-1} (1) is open. Since the functions e_{λ} are two by two orthogonal, the sets e_{λ}^{-1} (1) are two by two disjoint. Furthermore the family $(e_{\lambda}^{-1}(1))_{\lambda \in L}$ is an open cover of X. Indeed, if $x \in X$, the $\chi(A)$ -large ideal a is not contained in Ker δ_x . This means that there is an index λ so that $\delta_x(e_{\lambda}) = e_{\lambda}(x) \neq 0$. Since $e_{\lambda}(x)$ is an idempotent of **R**, it must be 1 and so $x \in e_{\lambda}^{-1}$ (1). Let \mathscr{F} be a Cauchy filter on A. For each $\lambda \in L$, there is $F_{\lambda} \in \mathscr{F}$ so that $F_{\lambda} - F_{\lambda} \subset Ann(e_{\lambda})$. Take $g_{\lambda} \in F_{\lambda}$. Let f be the continuous function that agrees with g_{λ} on e_{λ}^{-1} (1). We claim that \mathscr{F} converges to f. Let M be a finite subset of L. $F = \bigcap_{\lambda \in M} F_{\lambda}$ belongs to \mathscr{F} . For each $\lambda \in M$ and $g \in F$, $(f-g)e_{\lambda} = 0$. In fact, if $e_{\lambda}(x) \neq 0$, $x \in e_{\lambda}^{-1}$ (1) and $(f-g)(x) = g_{\lambda}(x) - g(x)$. The function $g_{\lambda} - g$ belongs to $F_{\lambda} - F_{\lambda}$, which is contaned in Ann (e_{λ}) . Thus $(g_{\lambda} - g)e_{\lambda} = 0$ and so $g_{\lambda}(x) - g(x) = 0$. In this way we have shown that f - F is contained in Ann $((e_{\lambda})_{\lambda \in M})$. For the arbitrariness of

M, the filter \mathcal{F} converges to f.

(a) Let A be an absolutely flat algebra and suppose that a), b) and c) are valid. From a) the Gelfand morphism $\mathscr{G}_{\chi(A)}$ is one-one. Consequently A is isomorphic to its image Â. Endow $\chi(A)$ with the Zariski topology. Since by 3.7 a), A is regular on $\chi(A)$, the conditions of 3.5 are fulfilled and $\chi(A)$ is a P-space. We claim that $\hat{A} = \mathscr{C}(\chi(A))$. If D (a) is a clopen subset of $\chi(A)$, from b) it is possible to apply the proposition 2.7 and find an idempotent $e \in A$ such that D (a) = D (e). Clearly the Gelfand transform \hat{e} of e is the characteristic function of D (a). Thus we can assert that the idempotents of $\mathscr{C}(\chi(A))$ belong to \hat{A} . Let $f \in \mathscr{C}(\chi(A))$. Since $\chi(A)$ is a P-space, for each $r \in \text{Im}(f)$, the set $f^{-1}(r)$ is clopen. For each $r \in \text{Im}(f)$, let e_r be the idempotent of A so that \hat{e}_r is the characteristic function of $f^{-1}(r)$. Since $\chi(A) = \bigcup_{r \in \text{Im}(f)} f^{-1}(r)$ and since the sets $f^{-1}(r)$,

 $r \in \text{Im}(f)$, are two by two disjoint, the idempotents e_r are two by two orthogonal and generate an $\chi(A)$ -large ideal. Endow $\mathscr{C}(\chi(A))$ with the topology for which the ideals $\text{Ann}((\hat{e}_r)_{r \in F})$, where F is finite and contained in Im (f), are a fundamental system of neighbourhoods of 0. By virtue of the completeness condition, \hat{A} , provided with the relative topology, is complete. It follows that \hat{A} is closed in $\mathscr{C}(\chi(A))$. If we show that fis a cluster point of \hat{A} in $\mathscr{C}(\chi(A))$, then f must belong to \hat{A} . Let $U = \text{Ann}((e_r)_{r \in F})$, with $F \subset \text{Im}(f)$ and finite, be a neighbourhood of 0. We have to prove that there is $a \in A$ so that $\hat{a} - f$ belongs to U. We put $a = \sum_{r \in F} re_r$ and claim that $\hat{a} - f$ belongs to U. We have to prove that, for each $s \in F$, $(\hat{a} - f) \hat{e}_s = 0$. By the orthogonality, $(\hat{a} - f) \hat{e}_s = s\hat{e}_s - f\hat{e}_s$. If $\hat{e}_s(x) \neq 0$, then $\hat{e}_s(x) = 1$ and $x \in f^{-1}(s)$. Hence $(\hat{a} - f)(x) = 0$. This proves that, for each $x \in \chi(A)$, $(\hat{a}(x) - f(x)) \hat{e}_s(x)$ is zero. The theorem is thus demonstrated.

References

- [1] A. W. HAGER (1979) A class of function algebras (and compactifications and uniform spaces), Simposia Mathematica N° 17.
- [2] N. BOURBAKI Théories Spectrales, Fasc. XXXII, Hermann.
- [3] M. JERISON and L. GILLMAN (1960) Rings of Continuous Functions, Van Nostrad.
- [4] M. F. ATIYAH and I. G. MACDONALD (1969) Introduction to Commutative Algebra, Addison-Wesley.