Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Marino Badiale

Some Characterization of the q-Gamma Function by Functional Equations. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 74 (1983), n.2, p. 49-54.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1983_8_74_2_49_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 12 febbraio 1983
Presiede il Presidente della Classe Giuseppe Montalenti

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi matematica. - Some Characterization of the q-Gamma Function by Functional Equations. Nota II di Marino Badiale, presentata ${ }^{(*)}$ dal Socio G. Scorza Dragoni.

[^0]2 The counterexamples which conclude part I serve to indicate the obstacles to a reasonable extension of theorem b) to the functions $\Gamma_{q}(x)$ It is, however, possible to weaken the assumption that $\mathrm{d}^{2} f / \mathrm{d} x^{2}$ be continuous, and that (1.2) holds for all q, if one strengthens the remaining conditions. More precisely, we have:

Proposition 2. Let $f(q, x)$ be a real valued function for $q>0 \quad x>0$ such that df/dx exists for all (q, x). Suppose that $f(q, x)$ satisfies (1.1) and that there exists a $q_{0} \neq 1$ such that $f\left(q_{0}, x\right)>0$ for all x and

$$
\begin{equation*}
f\left(q_{0}, n x\right) f\left(q_{0}^{n}, 1 / n\right), \cdots, f\left(q_{0}^{n},(n-1) i n\right)= \tag{2.1}
\end{equation*}
$$

$$
=f\left(q_{0}^{n}, x\right) f\left(q_{0}^{n}, x+1 / n\right), \cdots, f\left(q_{0}^{n}, x+(n-1) / n\right)\left(1+q_{0}+\cdots+q_{0}^{n-1}\right)^{n x-1}
$$

for all $x>0$ and arbitratily large positive integers n. Let $\varphi(q, x)=f(q, x) / \Gamma_{q}(x)$ and $g(q, x)=\log \varphi(q, x)$. Suppose that the sequence $g_{x}\left(q_{0}^{n}, x\right)$ converges uniformly in x as $n \rightarrow \infty$ to a function $h(x)$ integrable on $0 \leq x \leq 1$, and that the sequence $g\left(q_{0}^{n}, x\right)$ converges for at least one value of $x, 0<x<1$.
(*) Nella seduta dell's gennaio 1983.

Then $f\left(q_{0}, x\right)$ differs from $\Gamma_{q}(x)$ by at most a multiplicative constant, that is $f\left(q_{0}, x\right) \equiv k \Gamma_{q_{0}}(x)$ for some constant k.

Proof. As in the proof of proposition 1, $\varphi(q, x)$ is periodic in x with period 1 and so we need only consider x such that $0 \leq x \leq 1 \quad$ Replacing x by x / n in (21) and passing to $\varphi(q, x)$ gives

$$
\begin{gather*}
\varphi\left(q_{0}, x\right) \varphi\left(q_{0}^{n}, 1 / n\right), \cdots, \varphi\left(q_{0}^{n},(n-1) / n\right)= \tag{2.2}\\
=\varphi\left(q_{0}^{n}, x / n\right) \varphi\left(q_{0}^{n},(x+1) / n\right), \cdots, \varphi\left(q_{0}^{n},(x+n-1) / n\right) .
\end{gather*}
$$

Taking the logarithmic derivative of both sides gives

$$
\begin{equation*}
g_{x}\left(q_{0}, x\right)=\frac{1}{n}\left[g_{x}\left(q_{0}^{n}, x / n\right)+\cdots+g_{x}\left(q_{0}^{n}(x+n-1) / n\right)\right] . \tag{2.3}
\end{equation*}
$$

Hence we find

$$
g_{x}\left(q_{0}, x\right)=\frac{1}{n} \sum_{k=1}^{n-1} g\left(q_{0},(x+k) / n\right)-h((x+k) /) n+\frac{1}{n} \sum_{k=1}^{n-1} h((x+k) / n) .
$$

By the assumed uniform convergence of $g_{x}\left(q_{0}^{n}, x\right)$ to $h(x)$ the first sum here tends to zeio as $n \rightarrow \infty$, while the second sum, being a Riemann sum for $h(x)$ on the interval $0 \leq x \leq 1$, has limit $\int_{0}^{1} h(x) \mathrm{d} x$. On the other hand, by the hypotheses made on the sequence $g_{x}\left(q_{0}^{n}, x\right)$ we find that $g\left(q_{0}^{n}, x\right)$ converges uniformly as $n \rightarrow \infty$ to a function $\mathrm{H}(x)$ such that $d / d x(\mathrm{H}(x))=h(x)$. But then it is clear that $\int_{0}^{1} h(x) \mathrm{d} x=\mathrm{H}(1)-\mathrm{H}(0)=0$, since $\mathrm{H}(x)$ has period 1, being a uniform limit of functions of period 1. Thus $g_{x}\left(q_{0}, x\right)=0$, and so $g\left(q_{0}, x\right)$ is constant, and the same holds for $\varphi\left(q_{0}, x\right)$.

QED.

The counterexample preceding this proposition satisfies all the conditions except (2.1), when q_{0} is taken less than 1 (greater than 1 if the exponent in $h_{q}(x)$ is -4). Observe that it is not assumed that $\mathrm{d} f / \mathrm{d} x$ is continuous, although, of course, this hypothesis " after being thrown out of the door, has returned through the window" in the guise of our convergence assumption. As in the corollary to proposition 1 we obtain a good analogue to theorem b) if we consider the domain $0 \leq q \leq 1,0<x$:

Corollary: let $f(q, x)$ be a positive, continuous, real valued function for $0 \leq q \leq 1,0<x$ such that $\mathrm{d} f / \mathrm{d} x$ is continuous.

Suppose that $f(q, x)$ satisfies (1.1) and (2.1) for some positive integer n and all $q<1$. Then $f(q, x)=k_{q} \Gamma_{q}(x)$ for some constant k_{q}, depending on q.

Proof. Iteration shows that if (2.1) holds for n and all q, then it holds for n^{2}, n^{4} etc., and hence for arbitrarily large values. The function $g_{x}(q, x)$ is then uniformly continuous on $0 \leq q \leq 1,0 \leq x \leq 1$, and this implies uniform convergence of the $g_{x}\left(q^{n}, x\right)$ to $g_{x}(0, x)$ as $n \rightarrow \infty$ through the 'good' values. Clearly, $g\left(q^{n}, x\right)$ converges to $g(0, x)$ for all x and all $q<1$.

QED.
3. We now seek to extend theorem c) to the functions $\Gamma_{q}(x)$. We restrict ourselves to the case $0 \leq q \leq 1$. It turns out that in order to recover a good analogue of theorem c) it is sufficient to impose a rather weak additional hypothesis, the existence of a continuous derivative with respect to the variable q.

Proposition 3. Let $f(q, x)$ be a positive real-valued continuous function on $0 \leq q \leq 1,0<x$ such that $\mathrm{d} f / \mathrm{d} q$ is continuous. Suppose that $f(q, x)$ satisfies (1.1) and (2.1) for all (q, x) and all positive integers n. Then $f(q, x)=\Gamma_{q}(x)$.

Proof. We use the notation of proposition 2; (2.1) now holds for all (q, x) and all n. Taking logarithmic derivatives with respect to q gives that $h(q, x)=\mathrm{d} / \mathrm{d} q(\log \varphi(q, x))$ satisfies $h(q, x)+n q^{n-1} h\left(q^{n}, 1 / n\right)+\cdots+n q^{n-1} \times$ $\times h\left(q^{n},(n-1) / n\right)=n q^{n-1}\left(h\left(q^{n}, x / n\right)+\cdots+h\left(q^{n},(x+n-1) / n\right)\right)$.

Adding and subtracting $h\left(q^{n}, 0\right)$ and rearranging we find

$$
\begin{equation*}
h(q, x)=n q^{n-1}\left[h\left(q^{n}, 0\right)+\sum_{k=0}^{n-1} h\left(q^{n},(x+k) / n-h\left(q^{n}, k / n\right)\right] .\right. \tag{3.1}
\end{equation*}
$$

However, it is not difficult to show that the right hand side of (3.1) tends to 0 for $q<1$ as $n \rightarrow \infty$. Indeed we have, on multiplying and dividing by n,

$$
h(q, x)=n^{2} q^{n-1}\left[\frac{1}{n} h\left(q^{n}, 0\right)+n^{-1} \sum_{k=0}^{n-1} h\left(q^{n},(x+k) / n\right)-h\left(q^{n}, k / n\right)\right]
$$

and

$$
\begin{gathered}
n^{-1} \sum_{k=0}^{n-1} h\left(q^{n},(x+k) / n\right)-h\left(q^{n}, k / n\right)=n^{-1} \sum_{k=0}^{n-1}\left(h\left(q^{n},(x+k) / n\right)-\right. \\
-h(0,(x+k) / n))+n^{-1} \sum_{k=0}^{n-1}(h(0,(x+k) / n)-h(0, k / n)+ \\
+n^{-1} \sum_{k=0}^{n-1}\left(h(0, k / n)-h\left(q^{n}, k / n\right)\right) .
\end{gathered}
$$

By the uniform continuity of $h(q, x)$ on the square $0 \leq q \leq 1,0 \leq x \leq 1$ all three terms tend to 0 as $n \rightarrow \infty$.

We conclude that $h(q, x)=0$ on the closed square (the case $q=1$ $0 \leq x \leq 1$ is already covered by Artin's theorem c) and our conventional interpretation of the functional equation for $q=1$, or else, follows by continuity of $h(q, x))$.

Thus $g(q, x)=\log \left(f(q, x) / \Gamma_{q}(x)\right)$ is independent of q and so we may write $g(q, x)=g(x)$ and (2.1) gives

$$
\begin{gather*}
g(n x)+g(1 / n)+\cdots+g((n-1) / n)= \tag{3.2}\\
=g(x)+g(x+1 / n)+\cdots+g(x+(n-1) / n) .
\end{gather*}
$$

At this point we may follow Artin's path. Let $g(x)$ have Fourier series

$$
g(x) \sim \sum_{U=-\infty}^{+\infty} c_{U} e^{2 \pi i \cup n x}
$$

Then, the Fourier series of the left hand side of (3.2) is given by $\sum_{U=-\infty}^{+\infty} \mathrm{d}_{\cup} e^{2 \pi i \cup x}$ with $\mathrm{d}_{\cup}=c_{\cup}$ for $\cup \neq 0$ and $\mathrm{d}_{0}=c_{0}+g(1 / n)+\cdots+g((n-1) / n)$.

The right hand side has Fourier series given by

$$
\sum_{k=0}^{n-1} \sum_{U=-\infty}^{+\infty} c_{U} e^{2 \pi i \cup x} e^{2 \pi i \cup k / n}=\sum_{U=-\infty}^{+\infty} c_{\cup}\left(\sum_{k=0}^{n-1} e^{2 \pi i \cup k / n}\right) e^{2 \pi i \cup x},
$$

which by the usual relation

$$
\sum_{k=0}^{n-1} e^{2 \pi i \cup k / n}= \begin{cases}n & \text { if } n \mid \cup \\ 0 & \text { otherwise }\end{cases}
$$

becomes $\sum_{\cup=-\infty}^{+\infty} n c_{n \cup} e^{2 \pi i \cup n x}$.
Thus we have

$$
\sum_{\cup=-\infty}^{+\infty} \mathrm{d}_{\cup} e^{2 \pi i \cup n x}=\sum_{\cup=-\infty}^{+\infty} n c_{n \cup} e^{2 i \pi \cup n x} \quad \text { and so } \quad \mathrm{d}_{\cup}=n c_{p \cup}
$$

Hence we obtain that for $\cup \neq 0 c_{\cup}=n c_{n \cup}$, that is, in particular:

$$
\begin{equation*}
c_{n}=c_{1} / n \quad \text { and } \quad c_{-n}=c_{-1} / n \quad \text { for all integers } \quad n>0 . \tag{3.3}
\end{equation*}
$$

If we now replace $g(x)$ by $g(x)-c_{0}$, the new function satisfies the conditions (3.3) and has constant term in its Fourier series equal to 0. As in Artin's proof, this now gives $g(x)=c_{0}$. But then $\varphi(q, x)$ is also constant, and since $\varphi(1, x)=1$, we conclude that $f(q, x)=\Gamma_{q}(x)$ as desired.

QED.
4. We conclude our discussion with some remarks relating to $\Gamma_{q}(x)$ considered as an analytic function of its arguments. As in the case of the usual gamma function, analyticity in z (or even in z and q) together with the functional equation (1.1) does not characterize $\Gamma_{q}(z)$ uniquely. In fact, if we multiply by any analytic funcion periodic with period 1 we obtain another function, satisfying (1.1), and if we demand that our multiplier assume the value 1 at all integers (as does, for example, $\cos 2 \pi z$), the new function will interpolate $n!_{q}$. This technique will always lead to meromorphic functions, like $\Gamma_{q}(z)$ itself.

We can, however, search for an entire function which interpolates $n l_{q}$. In other words we seek a q-analogue of the following function, introduced by Hadamard:

$$
\mathrm{H}(z)=(\Gamma(1-z))^{-1} \mathrm{~d} / \mathrm{d} z[\log [\Gamma((1-z) / 2) / \Gamma(1-(z / 2))]] .
$$

$\mathrm{H}(z)$ interpolates $n!$, is entire, and satisfies the functional equation

$$
\mathrm{H}(z+1)=z \mathrm{H}(z)+(\Gamma(1-z))^{-1} .
$$

In this regard we have the following.
Proposition 4: Define, for $q>0$

$$
\mathrm{H}_{q}(z)=k q^{\left(\frac{z}{2}\right)} \Gamma_{q}(1-z)^{-1} \mathrm{~d} / \mathrm{d} z\left[\log \left[\Gamma_{q}((1-z) / 2) / \Gamma_{q}(1-z / 2)\right]\right]
$$

with $k=(q-1) / \log q$.
Then $\mathrm{H}_{q}(z)$ is an entire function of z which interpolates $n!q$ and which satisfies the functional equation

$$
\begin{equation*}
\mathrm{H}_{q}(z+1)=\frac{1-q^{z}}{1-q} \mathrm{H}_{q}(z)+\frac{1}{2} q^{\left(\frac{z}{2}\right)}\left(1+q^{z / 2}\right)\left(\Gamma_{q}(1-z)\right)^{-1} . \tag{4.1}
\end{equation*}
$$

Proof. It is easy to verify that $\Gamma_{q}(z)$ has (simple) poles at the points $x=-n+2 k \pi i \log q$ for $n=0,1,2, \cdots$ and $k=0, \pm 1, \pm 2, \cdots$, and has no zeroes. Furthermore, the logarithmic derivative appearing in the definition has poles (simple, of course) in precisely the points where $1 / \Gamma_{q}(1-z)$ vanishes, namely the points of the form $n+2 k \pi i / \log q$ with $n=1,2,3, \ldots$ and $k=0, \pm 1, \pm 2, \cdots$. In fact, the numerator contributes the poles ' over' the odd integers, while the denominator contributes the poles with n an even integer. Hence $\mathrm{H}_{q}(z)$ is entire. In particular $\mathrm{H}_{q}(0)$ is finite, so if (4.1) holds we will have $\mathrm{H}_{q}(1)=1$, and by recursion $\mathrm{H}_{q}(n+1)=n!{ }_{q}=\Gamma_{q}(n+1)$ for $n=0,1,2, \cdots$. Thus it remains only to establish (4.1).

By definition we have

$$
\begin{gathered}
\mathrm{H}_{q}(z+1)=k q^{\left(z^{2}+z\right) / 2}\left(\Gamma_{q}(-z)\right)^{-1} \mathrm{~d} / \mathrm{d} x\left[\log \left[\Gamma_{q}(-z / 2) / \Gamma_{q}((1-z) / 2)\right]\right]= \\
\left.\quad-k q^{\left(z^{2}+z\right) / 2}\left(\Gamma_{q}(-z)\right)^{-1} \mathrm{~d} / \mathrm{d} x\left[\log \left[\Gamma_{q}((1-z) / 2) / \Gamma_{q}(-z) / 2\right)\right]\right]
\end{gathered}
$$

It follows from (1.1) that

$$
\Gamma_{q}(-z)=\frac{1-q}{1-q^{-z}} \Gamma_{q}(1-z)
$$

and

$$
\Gamma_{q}(-z / 2)=\frac{1-q}{1-q^{-z / 2}} \Gamma_{q}(1-z / 2)
$$

Hence

$$
\begin{aligned}
\mathrm{H}_{q}(z+1) & =-k q^{\left(z^{2}+z\right) / 2} \Gamma_{q}(1-z) \frac{1-q^{-z}}{1-q} \mathrm{~d} / \mathrm{d} x\left[\log \frac{\Gamma_{q}((1-z) / 2)}{\Gamma_{q}(1-z / 2)}\right]- \\
& -k q^{\left(z^{2}+z\right) / 2}\left(\Gamma_{q}(1-z)\right)^{-1} \frac{1-q^{-z}}{1-q} \mathrm{~d} / \mathrm{d} x\left[\log \frac{1-q^{-z / 2}}{1-q}\right]= \\
& =k q^{\left(z^{2}-z\right) / 2}\left(\Gamma_{q}(1-z)\right)^{-1} \frac{1-q^{z}}{1-q} \mathrm{~d} / \mathrm{d} x\left[\log \frac{\Gamma_{q}((1-z) / 2]}{\Gamma_{q}(1-z / 2)}\right]+ \\
& +k q^{\left(z^{2}-z\right) / 2}\left(\Gamma_{q}(1-z)\right)^{-1} \frac{1-q^{z}}{1-q} \frac{1}{2} \log q \cdot \frac{1}{q^{z / 2}-1}= \\
& =\frac{1-q^{z}}{1-q} \mathrm{H}_{q}(z)+\frac{1}{2} \frac{1-q^{z / 2}}{1-q^{z}}\left(\Gamma_{q}(1-z)\right)^{-1} q^{\left(z^{2}-z\right) / 2}= \\
& =\frac{1-q^{z}}{1-q} \mathrm{H}_{q}(z)+\frac{1}{2}\left(1+q^{z / 2}\right)\left(\Gamma_{q}(1-z)\right)^{-1} q^{\left(z^{2}-z\right) / 2} . \quad \text { QED. }
\end{aligned}
$$

Needless to say, when $q \rightarrow 1$ then $\mathrm{H}_{q}(z) \rightarrow \mathrm{H}(z)$ and the functional equation (4.1) tends to the equation of $\mathrm{H}(z)$.

Bibliography

[1] F. H. Jackson (1910) - On q-definite integrals. "Quart. Journ. pure and Appl. Math". 41, 193-203.
[2] R. Askey (1978) - The q-Gamma and q-Beta Functions. "Applicable Analysis», 8, 125-141.
[3] R. Askey (1980) - Ramanujan's extension of gamma and beta functions. «Amer. Math. Monthly", 87, 346-359.
[4] D. S. Моaк (1980) - The q-gamma function for $q>1$. "Aequationes Math.», 20, No. 2-3, 278-285.
[5] N. Koblitz (1980) - q-Extension of the p-adic gamma function. «Trans. Amer. Math. Soc. », 260, 449-457.
[6] N. Koblitz (1982) - q-Extension of the p-adic gamma function. II. «Tran. Amer. Math. Soc. 》, 273, 111-129.
[7] E. Artin (1964) - The Gamma Function. Holt, Rinehart and Winston, New York.

[^0]: Rlassunto. - In questo lavoro, suddiviso in una Nota I e in una Nota II, si estendono alle funzioni q-gamma i classici risultati sulla determinazione univoca della funzione gamma tramite equazioni funzionali; si introduce poi una q-generalizzazione di una funzione fattoriale intera, e se ne indicano le principali proprietà.

