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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 25 novembre 1982 
Presiede il Presidente della Classe G iu sep p e  M o n ta le n t i

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — The pair of matrix equations AX=B and A*Y+ CX= D <*>. 
Nota di Jerzy K. Baksalary<**), presentata <***) dal Corrisp. M. Ageno.

Riassunto. — È stata trovata una condizione necessaria e sufficiente affinchè le 
due equazioni matriciali AX =  B e A m Y +  CX =  D ammettano una soluzione comune. 
Di quest’ultima è poi stata data una rappresentazione generale, per il caso in cui la condi
zione trovata sia soddisfatta. È stato inoltre formulato un criterio per l’unicità della so
luzione e, ove essa sia unica, ne è stata determinata la forma.

Questi problemi erano stati in precedenza trattati da V. Valerio (1976), ma le con
clusioni a cui egli è pervenuto non sono corrette.

1. Introduction and preliminaries

Let Cm>n denote the vector space of m X n  matrices over the complex field. 
Given A e C w,n, the symbols A*, R (A) , N (A), and r (A) will stand for the 
conjugate transpose, range, null space, and rank, respectively, of A. Furthermore, 
A“ will denote a generalized inverse of A, that is, any solution to the equation

AA“ A =  A ,
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while A+ will denote the Moor e-Penrose inverse of A, that is, the unique solu
tion to the set of equations

A Jf A — A , A+ AA+ = ; A+ , (AA+)* =  AA+, and (A+ A)* =  A+ A.

It is known that PA = ; AA+ is the projector onto R (A) along N (A*), and that 
Q a— Ii»-  Pa (Im stands for the identity matrix of order m) is the projector 
onto N (A*) along R(A). Obviously, if A e C m,m and is nonsingular, then 
A+ = ;A ~ \ thus implying that PA =  Im and Qa =  Om,m, where Omm denotes 
the null matrix of size m X m.

The present note deals with the pair of linear matrix equations,

(1) AX =  B,

(2) A*Y +  CX =  D ,

wherein A e Cm,n , B e Cm,v , C g Cn,n, and D g CUyV are known. A criterion 
for the consistency of this pair is derived, and, if a common solution exists, its 
general representation is given. Moreover, a criterion for the uniqueness of the 
common solution is established, and an explicit form of the unique solution is 
found. The pair of equations (1) and (2) has already been examined by Valerio 
[8], especially in the context of some problems concerning reticulated structures, 
but the statements given by him as the main results are false, which will be 
exhibited by providing appropriate counterexamples.

The developments of this note are essentially based on the following well 
known results pertaining to a simple matrix equation of the form

(3) M X ^ N ,  

with known M g Cs4 and N G Cs,w.

L emma 1. Equation (3) is consistent if  and only if

R (N) c  R (M ).

L emma 2. I f  equation (3) is consistent, then its general solution is expressi
ble as

X =  M“ N +  (I* ~  M” M) Z ,

where 7j varies over CtiU.

L emma 3 . I f  equation (3) is consistent, then it admits the unique solution 
X =  M“ N i f  and only i f  r (M) =  t, in which case the product M~ N is inde
pendent of the choice of M"

2. Consistency and a general representation of the solution

In his Theorem 1, Valerio [8] states that the pair of equations (1) and (2) 
is consistent if and only if the equation (1) is consistent, which, on account of 
Lemma 1, is equivalent to the inclusion R (B) c= R (A). This statement is rather
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curious, for even the consistency of each of the equations (1) and (2) is not, in 
general, a sufficient condition for the consistency of the pair comprising (1) 
and (2). Taking, for example,

A =  D* =  (1 0) , B =  (1), and C = ( j  ,

it is easy to verify that no X g C1>2 and Y e C u  exist which would satisfy (1) 
and (2) simultaneously, in spite of the fact that the conditions R (B) c  R (A) and 
R (D) a  R (C : A*) are fulfilled. A correct consistency criterion is revealed in 
the following

T heorem 1. The pair of equations (1) and (2) admits a common solution if 
and only if

(4) R (B) c  R (A)

and

(5) R (D — CA+ B) c  R (A* ! CQA*).

Proof. On account of Lemma 1, the equation (1) is consistent if and only 
if (4) holds, in which case, according to Lemma 2, the general solution may be 
written as

(6) X =  A+ B +  Qa*V,

with V varying over Cn,p. Substituting (6) into equation (2) transforms the 
latter to the form

(7) (A* : CQa.) ( J ) = D - C A + B,

Hence it follows that condition (4) is to be supplemented by a necessary and 
sufficient condition for the consistency of (7) which, in view of Lemma 1, 
expresses as in (5). The proof is complete.

Utilizing remarks given on p. 517 of [1], it can be noted that an equivalent 
form of (5) is

R (D — CA+ B) c  R (A*) H  R (QA* CQA*),

where |+j denotes the orthogonal sum of the specified subspaces. On the other 
hand, Rao’s [6] Lemma 2.1 assures that if C is nonnegative definite, then

(8) R (A *:C Q a.) =  R ( A* : C ) ,
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thus implying a simplification of (5) to the form

(9) R (D) c  R (A* ! C) .

Observing that (9) is a necessary and sufficient condition for the consistency 
of (2) leads to the following

Corollary 1. The pair of equations (1) and (2), with a nonnegative definite 
C, admits a common solution i f  and only i f  each of these equations admits a 
solution.

Having determined a criterion for the existence of a common solution to 
the considered pair of equations, it is now natural to ask about its form.

T heorem 2. I f  the pair of equations (1) and (2) admits a common solution, 
then a general representation of the solution is

(10) X =  A+ B +  S+ (D — CA+ B) +  Q(A* : s*> W

and

(11) Y =  A*+ (In — CS+) (D -  CA+ B) — A*+ CQ(A* : s*, W +  Qa Z , 

where

(12) S =  Qa*CQa*,

while W and Z vary over Cn,p and Cm,v , respectively.

Proof. From the proof of Theorem 1 it is clear that the crucial point in 
developing a general representation of the common solution to equations (1) 
and (2) is to devise a solution to equation (7). On account of Theorem 3.1 in 
Pringle and Rayner [5], one of the generalized inverses of (A* : CQA*) is

v- /A * + - A * + CQa. S + Qa‘ \(A : CQa-) =  ^ )■

But according to a result on p. 682 of [3] (see also Lemma 2 in [1]),

(13) Qa*S+ ^ S + =  S+ Qa*,

and, therefore,

(A*:CQA. ) - = p  

Hence, using (13) and the fact that S+ A*=^On,m,

/  A*+ (I» — CS+) j

(A* : cQ A*r (A* : c q a*) =  ( ^  a
^n,m- ( ■

A*+ CQa- Qs‘
Ps*
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In view of Lemma 2, it now follows that a general representation of the solution 
to equation (7) is expressible as

(14) Y =  A*+ (I„ — CS+) (D -  CA+ B) +  QA Z — A*+ CQA* Qs* W 

and

(15) V =  S+ (D — CA+ B) +  QS*W,

where W and Z vary over Cn,v and Cm>p, respectively. Substituting (15) into (6) 
and applying (13) gives

(16) X =  A+ B +  S+ (D — CA+ B) +  Qa* Qs* W .

Finally, observe that

(17) Qa*Qs*=-I„ — (Pa* +  Ps*).

Since

PA* PS* ^ P S* PA* =  Onin, 

it follows by Theorem 5.1.2 in Rao and Mitra [7] that

PA* +  Ps*-P(A* ; s*) •

Hence, in view of (17),

Qa* Qs* =  Q(a* ; s*)>

which transforms (14) and (16) to the required forms (10) and (11), and thus 
completes the proof.

Repeating the arguments following Theorem 1, it can be noted that the 
projector Q(A*:s*)> occurring in (10) and (11), is alternatively expressible as 
Q(a* : cq a*)> and also that a substantial simplication of a general representation 
of the common solution is achieved when C is nonnegative definite, in which 
case, according to (8), Q(A* : s*> =  Q(a* ; c*> > and, consequently,

A*+ CQ(a* : S*) =  Om,n ,

thus leading to the following

Corollary 2. I f  the pair of equations (1) and (2), with a nonnegative defi
nite C, admits a common solution, then a general representation of the solution is

X — A+ B +  S+ (D — CA+ B) +  Q(a*: c*) W
and

Y =  A*+ ( I „ -  CS+) (D -  CA+ B) +  Qa Z , 

where W and Z vary over Cn,p and CW)P, respectively.
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3. U niqueness

In the present section, the considered pair of equations is constantly assumed 
to be consistent. In his Theorem 2, Valerio [8] states that a necessary and suf
ficient condition for the uniqueness of the common solution to the equations 
(1) and (2) is that A and C be both of full rank, or, more precisely, that 
r (A) =  m and r (C) =  n. It can be seen, however, that this statement is 
false. An example wherein

A =  (l 1) , B — (0) , C =  ^  I “ } ) ,  a n d D = ; ( U )

shows that Valerio’s condition is not necessary, while an example wherein 

A =  (l 0) , B — (0) , C = ( °  J ) ’ and D “  ( o )

shows that it is not sufficient. The first of these examples also exhibits the incor
rectness of an explicit representation of the unique common solution, provided 
by Valerio in his formulas (9') and (9"). These formulas fail in any case where C 
is singular.

A correct criterion for the uniqueness of the common solution to equations 
(1) and (2) can be obtained by putting the requirement that the general repre
sentations of X and Y, as given in (10) and (11), be independent of the choice 
of W 6 Cn>v and Z e Cm,v. It is clear that this holds if and only if

Q(A* ; s*) ’ On.w and Qa ,

or, in terms of the ranks of matrices, if and only if

(18) r (A* : S*) =  n and r (A) =  m .

Since, on account of Theorem 5 in Marsaglia and Styan [4], r (A* :. S*) =; 
=  r(A) +  r (S), the first of the equalities in (18) may be replaced by r (S) ==s 
=  n — m. An explicit form of the unique common solution follows immediately 
from (10) and (11), thus concluding the proof of the following

T heorem 3. I f  the pair of equations (1) and (2) admits a common solution, 
the solution is unique if and only if

(19) r (A) =  m

and

(20) r (Qa* CQa*) — n — m .
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I f  this is the case9 then the unique solution is

X =  A+ B +  S+ (D — CA+ B)
and

Y =  A*+ (Iw — CS+) (D — CA+ B ),

with S as defined in (12).

It is obvious that the condition (19) is equivalent to N (A*) =; {Om>1}. On 
the other hand, since r (QA*) =  n — r (A), it is clear that the condition (20) 
may be written as

(21) r (Qa* CQa*) — r (Qa*) •

From Corollary 6.2 in Marsaglia and Styan [4] it follows that (21) holds if and 
only if

N (Qa* C ) n  R (Q A*) =  {Onfl}, 

or, equivalently, if and only if

N ( Q A* C ) n  N(A) =  {0Wfl}.

These observations are summarized below to form a geometrical version of 
the criterion for the uniqueness of the common solution to equations (1) 
and (2).

Remark. The rank conditions (19) and (20) involved in Theorem 3 are 
equivalent to the relations

N (A*) =; {Ow>1} and N (QA* C) n N (A) =  {Ow>1} ,

as well as to the relations

(22) ' R(A) =  Cmil and R (A* : C* QA*)=-Cntl .

It may be pointed out that some other alternative formulations of the ori
ginal condition (20) are available by applying results given on p. 88 in Ben- 
Israel and Greville [2] to (21). On the other hand, it seems noticeable that the 
uniqueness criterion simplifies when C is nonnegative definite. In fact, on 
account of (8), the second condition in (22) reduces to

R (A* : C) =; Cn>1,
or, in other words, to

N ( A ) n  N(C)  =  { 0 .fl},

thus leading to the following

Corollary 3. I f  the pair of equations (1) and (2), with a nonnegative defi
nite C, admits a common solution, the solution is unique ify and only i f  A and
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(A* ; C) both are of full row rank, or, equivalently, if, and only if, the null 
space of A* and the intersection of the null spaces of A and C both contain merely 
null vectors.

It should be mentioned, in conclusion, that some alternatives to the 
results developed in the present note can be obtained by rewriting the pair of 
equations (1) and (2) as a single linear matrix equation of the form

<”• (S <£.)(5HS).
to which Lemmas 1, 2 and 3 apply directly. The crucial point in such an ap
proach is to find an explicit representation of a generalized inverse of the parti
tioned matrix specified in (23). Clearly, any such generalized inverse is the 
ordinary inverse if and only if the solution to (23) is unique.
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