bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Graziosi, Maria Elena and Tucci, Elisabetta and Caminiti, Roberto and Innocenti, Giorgio:
Modificazioni dello sviluppo postnatale delle connessioni callosali somatosensoriali del gatto a seguito di lesioni parziali delle aree somatiche
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Serie 8 72 (1982), fasc. n.3, p. 169-175, (Italian)
pdf (454 Kb), djvu (627 Kb).

Sunto

The distribution of callosal neurones of the first somatosensory area (S1), projecting to contralateral second somatosensory area (S2), was studied with horseradish peroxidase in adult cats in which the injected S2 area had been deprived of some of its association and callosal input by an earlier lesion of S1 associated with a lesion of contralateral S2, performed on postnatal days 5 to 30. The distribution of callosal cells in S1 of animals subjected to cortical lesions on postnatal day 14 (2 cases) and 30, was in all respects similar to the controls. Callosal neurones were, in fact, selectively distributed only to parts of regions of the forepaw, trunk and hindlimb representation. However, the normally acallosal regions of S1 contained scattered neurones in the animal with cortical lesion inflicted on day 5. The partial filling-in of the regions of S1, normally devoid of callosal neurones, is probably due to preservation to adulthood of some juvenile callosal neurones which otherwise would have been eliminated or would have lost their callosal branch. Previous studies showed, in fact, that in the early postnatal period, callosal neurones are widely distributed through area S1 in kittens. Some interpretations of the findings are discussed.
Referenze Bibliografiche
[1] Adams J.C. (1977) - Technical considerations on the use of horseradish peroxidase as a neuronal marker. «Neuroscience», 2, 141-145.
[2] Caminiti R., Innocenti G.M. e Manzoni T. (1979) - The anatomical substrate of callosal messages from SI and SII in the cat. «Exp. Brain Res.», 34, 453-470.
[3] Changeux J.P. e Dancin A. (1976) - Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. «Nature», 264, 705-712.
[4] Glaser E.M. e Van der Loos H. (1965) - A semi-automatic computer microscope for the analysis of neuronal morphology. «IEEE Trans Bio-Med. Engin.», 12, 22-31.
[5] Guillery R.W. e Stelzner D.J. (1970) - The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. «J. Comp. Neurol.», 139, 413-422.
[6] Hollyday M. e Hamburger V. (1976) - Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. «J. Comp. Neurol.», 3, 311-320.
[7] Hubel D.H., Wiesel T.N. e Le Vay S. (1977) - Plasticity of ocular dominance columns in monkey striate cortex. «Phil. Trans. R. Soc. Lond. B.», 278, 377-409.

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali