Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Frans Loonstra

Subproducts defined by means of subdirect products

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 72 (1982), n.3, p. 115-120. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1982_8_72_3_115_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - Subproducts defined by means of subdirect products. Nota di Frans Loonstra, presentata ${ }^{(*)}$ dal Socio G. Zappa.

Riassunto. - Si supponga che l'anello \mathbf{R} ammetta una decomposizione come prodotto subdiretto $R=\underset{\alpha \in A}{\times} \mathbf{R}_{\alpha}$ di anelli $\mathrm{R}_{\alpha} \neq 0$, tali che per $\mathrm{S}_{\alpha}=\mathbf{R} \cap \mathbf{R}_{\alpha}$ si abbia $\mathrm{Ann}_{\mathrm{R}_{\alpha}} \mathrm{S}_{\alpha}=0(\forall \alpha \in \mathrm{~A})$, e sia $\mathrm{S}=\underset{\alpha \in \mathrm{A}}{\oplus} \mathrm{S}_{\alpha}$. Si scelga un R -modulo (destro) M che sia libero da torsione rispetto ad S, cioè $\mathrm{Ann}_{\mathrm{M}} \mathrm{S}=0$; allora M può essere rappresentato come prodotto subdiretto irridondante $\mathrm{M} \cong \underset{\alpha \in \mathrm{A}}{\underset{\sim}{x}} \mathrm{M}_{\alpha}$ degli R_{α}-moduli M_{α} liberi da torsione rispetto ad S_{α}. Si fa uno studio di un subprodotto generale di una classe C di R -moduli $\left.\mathrm{M}^{(i)}{ }_{(i \in \mathrm{I}}\right)$, dove C è determinato per mezzo di epimorfismi e relazioni.

1. Introduction

We assume that the (associative) ring R (with $1_{R}=1$) admits a decomposition as a subdirect product

$$
\begin{equation*}
\mathrm{R}=\underset{\alpha \in \mathrm{A}}{\times} \mathrm{R}_{\alpha} \tag{1}
\end{equation*}
$$

of rings $R_{\alpha} \neq 0(\alpha \in A)$ such that $S_{\alpha}=R \cap R_{\alpha}$ satisfies the condition

$$
\begin{equation*}
\mathrm{Ann}_{\mathrm{R}_{\alpha}} \mathrm{S}_{\alpha}=\left\{r_{\alpha} \in \mathrm{R}_{\alpha} \mid r_{\alpha} \mathrm{S}_{\alpha}=0\right\}=0 \quad(\forall a \in \mathrm{~A}) \tag{2}
\end{equation*}
$$

In particular, $S_{\alpha} \neq 0(\forall a \in A)$, i.e. the subdirect representation (1) of R is irredundant in the sense that none of R_{α} can be omitted from (1). Setting $\mathrm{S}=\underset{\alpha \in \mathrm{A}}{\oplus} \mathrm{S}_{\alpha}$ we have

$$
\begin{equation*}
\mathrm{Ann}_{\mathrm{R}} \mathrm{~S}=0 . \tag{3}
\end{equation*}
$$

Since S_{α} is an ideal of R_{α} (and of R), S is an ideal of $R . R_{\alpha}$ is even a rational extension of S_{α} (both viewed as right R_{α}-modules (notation: $\mathrm{S}_{\alpha} \subseteq_{r} \mathrm{R}$) and for a similar reason we have $S \subseteq_{r} R$. This implies that R_{α} is an essential extension of the right R_{α}-module S_{α} (notation: $\mathrm{S}_{\alpha} \subseteq_{e} \mathrm{R}_{\alpha}$) and $\mathrm{S} \subseteq_{e} \mathrm{R}$.

Denoting the canonical projection $\mathrm{R} \rightarrow \mathrm{R}_{\alpha}$ by π_{α}, $\operatorname{Ker} \pi_{\alpha}=\mathbf{P}_{\alpha}$, we conclude that $P_{\alpha}=A n n_{R} S_{\alpha}$. Let M be a (right) R-module which is S -torsionfree
(*) Nella seduta del 13 marzo 1982.
in the sense that

$$
\begin{equation*}
\mathrm{Ann}_{\mathrm{M}} \mathrm{~S}=\{m \in \mathrm{M} \mid m s=0 \quad \text { for all } s \in \mathrm{~S}\}=0 \tag{4}
\end{equation*}
$$

We wish to have a representation of M as an irredundant subdirect product of R_{α}-modules M_{α}. To this end, we define

$$
\begin{equation*}
\mathrm{N}_{\alpha}=\mathrm{Ann}_{\mathrm{M}} \mathrm{~S}_{\alpha} \quad(\alpha \in \mathrm{A}), \tag{5}
\end{equation*}
$$

and we observe that

$$
\bigcap_{\alpha} \mathrm{N}=\bigcap_{\alpha} \mathrm{Ann}_{\mathrm{M}} \mathrm{~S}_{\alpha}=\operatorname{Ann}_{M}\left(\sum_{\alpha} \mathrm{S}_{\alpha}\right)=\mathrm{Ann}_{\mathrm{M}} \mathrm{~S}=0
$$

If we set $\mathrm{M}_{\alpha}=\mathrm{M} / \mathrm{N}_{\alpha}$, then we obtain a representation of M as a subdirect product of R -modules:

$$
\begin{equation*}
\mathrm{M} \cong \underset{\alpha \in \mathrm{~A}}{\times} \mathrm{M}_{\alpha} \tag{6}
\end{equation*}
$$

In case $M=R$, (6) specializes to (1). One can prove the following statements:
(i) M_{α} is in a natural way an R_{α}-module; indeed $\mathrm{M}_{\alpha}\left(\operatorname{Ker} \pi_{\alpha}\right)=$ $=\mathbf{M}_{\alpha} \mathrm{P}_{\alpha}=0$.
(ii) M_{α} is S_{α}-torsionfree; for if $m_{\alpha} \mathrm{S}_{\alpha}=0$, and $m \in \mathrm{M}$ has m_{α} as α-coordinate, then $m \mathrm{~S}_{\alpha}=0$, i.e. $m \in \mathrm{~N}_{\alpha}$ and $m_{\alpha}=0$.

Then one can prove the following theorem (see: Fuchs-Loonstra [1]):
1.1. Let R be a ring as above. If M is an S -torsionfree R -module, then the non-zero M_{α} 's in (6) yield an irredundant representation of M as a subdirect product of S_{α}-torsionfree R_{α}-modules M_{α}.

2. SUbPRoducts and their decomposition

Among the submodules of a direct product the subdirect products play an important role. However-in general-not much is known about theit structure. In the case of a subdirect product M of two R-modules M_{1}, M_{2} we know that there exists an R-module F and two R-epimorphism $\alpha_{1}, \alpha_{2} ; \alpha_{1}$: $\mathrm{M}_{1} \rightarrow \mathrm{~F}, \alpha_{2}: \mathrm{M}_{2} \rightarrow \mathrm{~F}$, such that M can be represented as $\mathrm{M}=\left\{\left(m_{1}, m_{2}\right)\right\}$ $\left.\alpha_{1} m_{1}=\alpha_{2} m_{2}\right\}$.

In general, a subdirect product $M=\underset{a}{x} \mathbf{M}$ of more than two R -modules M_{α} is not such a special subdirect product, i.e. there does not always exist a module F and epimorphisms $\phi_{\alpha}: M_{\alpha} \rightarrow F(\alpha \in A)$ such that M is the R-module of
elements $m=\left(\cdots, m_{\alpha}, \cdots, m_{\beta}, \cdots\right) \in \prod_{\alpha \in \mathrm{A}} \mathrm{M}_{\alpha}$ with the property

$$
\cdots=\phi_{\alpha} m_{\alpha}=\cdots=\phi_{\beta} m_{\beta}=\cdots
$$

For more than two modules-in general-no satisfactory description of subdirect products is even available. In the finite case, however, we know more of the submodules of a direct $\operatorname{sum} \underset{i=1}{\oplus} \mathbf{M}_{i}$. If \mathbf{M} is any submodule of $\mathrm{M}^{*}=\underset{i=1}{\oplus} \mathrm{M}_{i}$ (M not necessarily a subdirect sum), then we have, for each $i=1, \cdots, k$, a homomorphism

$$
\alpha_{i}: \mathbf{M}_{i} \rightarrow \mathbf{F}=\mathbf{M}^{*} / \mathbf{M}\left(\alpha_{i} m_{i}=\boldsymbol{m}_{i}+\mathbf{M}\right),
$$

such that $\left(m_{1}, m_{2}, \cdots, m_{k}\right) \in \mathbf{M}^{*}$ belongs to M exactly if

$$
\alpha_{1} m_{1}+\alpha_{2} m_{\stackrel{ }{ }}+\cdots+\alpha_{k} m_{k}=0 .
$$

This idea will be generalized in the following. Therefore we start
(i) with a ring R admitting a decomposition (1) as subdirect product $R=\underset{\alpha \in A}{\times} R_{\alpha}$ with the properties (2): $\operatorname{Ann}_{\mathrm{R}_{\alpha}} \mathrm{S}_{\alpha}=0(\forall \alpha \in A)$ and
(ii) with a right R-module \mathbf{M} which is S-torsionfree.

We have seen (see 1.1) that M can be represented as a subdirect product of R_{α}-modules M_{α}, where $\mathrm{M}_{\alpha}=\mathrm{M} / \mathrm{N}_{\alpha}, \mathrm{N}_{\alpha}=\mathrm{Ann}_{\mathrm{M}} \mathrm{S}_{\alpha}(\alpha \in \mathrm{A}), \mathrm{Ann}_{M_{\alpha}} \mathrm{S}_{\alpha}=0$ ($\alpha \in \mathrm{A}$). It may happen that some of the M_{α} in the decomposition of M are zero; therefore we omit the irredundancy of the decomposition.

Suppose that M and F are both S-torsionfree R-modules (R as above) and $\phi: \mathrm{M} \rightarrow \mathrm{F}$ an R -epimorphism. Then using the decompositions $\mathbf{M}=\underset{\alpha}{\underset{\alpha}{x}} \mathbf{M}_{\alpha}, \mathbf{F}=\underset{\alpha}{\underset{\alpha}{x}} \mathbf{F}_{\alpha}$ we prove that ϕ induces-for each pair ($\mathrm{M}_{\alpha}, \mathrm{F}_{\alpha}$) an R-epimorphism $\phi_{\alpha}: \mathbf{M}_{\alpha} \rightarrow \mathrm{F}_{\alpha}(\alpha \in A)$. Indeed, $\mathbf{M}_{\alpha}=\mathbf{M} / \mathbf{N}_{\alpha}$, $\mathrm{N}_{\alpha}=\mathrm{Ann}_{\mathrm{M}} \mathrm{S}_{\alpha}, \quad \mathrm{F}_{\alpha}=\mathrm{F} / \mathrm{K}_{\alpha}, \quad \mathrm{K}_{\alpha}=\mathrm{Ann}_{\mathrm{F}} \mathrm{S}_{\alpha}$. Then

$\mathrm{F}=\cdots \underset{\sim}{x} \mathrm{~F}_{\alpha} \underset{\sim}{\underset{\sim}{x}} \cdots$ $\mathrm{N}_{\alpha}=\left\{\boldsymbol{m} \in \mathrm{M} \mid m \mathrm{~S}_{\alpha}=0\right\}, \mathrm{K}_{\alpha}=\left\{f \in \mathrm{~F} \mid f \mathrm{~S}_{\alpha}=0\right\}$.

If $m \in \mathrm{~N}_{\alpha}$ then $\phi(m) \in \mathrm{K}_{\alpha}$, since $\phi(m) \mathrm{S}_{\alpha}=\phi\left(m \mathrm{~S}_{\alpha}\right)=0$. This mean s that $\phi\left(\mathrm{N}_{\alpha}\right) \subseteq \mathrm{K}_{\alpha}$, and since ϕ is an epimorphism, ϕ induces an epimorphism $\phi_{\alpha}: \mathrm{M}_{\alpha} \rightarrow \mathrm{F}_{\alpha}$, defined by $\phi_{\alpha}\left(m+\mathrm{N}_{\alpha}\right)=\phi(m)+\mathrm{K}_{\alpha}$, or $\phi_{\alpha}\left(m_{\alpha}\right)=\phi(m)+$ $+\mathrm{K}_{\alpha}=f_{\alpha} \in \mathbf{F}_{\alpha}$.

The epimorphism ϕ_{α} is an R-epimorphism of the R -module M_{α} onto the R -module F_{α}; we may even consider ϕ_{α} as an R_{α}-epimorphism of the R_{α}-module M_{α} onto the R_{α}-module F_{α}. Indeed: if $\boldsymbol{m}_{\alpha} \boldsymbol{r}_{\alpha}=\boldsymbol{m}_{\alpha} r$, and, in a similar way, $f_{\alpha} r_{\alpha}=f_{\alpha} r$, then we have:

$$
\phi_{\alpha}\left(m_{\alpha} r_{\alpha}\right)=\phi_{\alpha}\left(m_{\alpha} r\right)=\phi_{\alpha}\left(m_{\alpha}\right) r=f_{\alpha} r=f_{\alpha} r_{\alpha} .
$$

That implies
(i) the R-epimorphism $\phi: \mathrm{M} \rightarrow \mathrm{F}$ induces (uniquely) R_{α}-epimorphisms $\phi_{\alpha}: \mathrm{M}_{\alpha} \rightarrow \mathrm{F}_{\alpha}(\alpha \in \mathrm{A})$, and
(ii) the diagram (*), where $\rho_{\alpha}: \mathrm{F} \rightarrow \mathrm{F}_{\alpha}$ is the canonical projection $\rho_{\alpha}: \mathrm{F} \rightarrow \mathrm{F} / \mathrm{K}_{\alpha}=\mathrm{F}_{\alpha}$ is commutative.

Suppose that we have the R-modules $\mathrm{M}^{(i)}(i \in \mathrm{I})$,
 F and R -epimorphisms $\dot{\phi}^{(i)}: \mathrm{M}^{(i)} \rightarrow \mathrm{F} \quad(i \in \mathrm{I}) ; \mathrm{R}$ is again as above and the modules $\mathrm{M}^{(i)}(i \in \mathrm{I})$ and F are S-torsionfree.

We consider the R-module $\mathrm{M} \subseteq \mathrm{M}^{*}=\Pi \mathrm{M}^{(i)}$, consisting of those elements $m=\left(m^{(i)}\right) \in \mathbf{M}^{*}$, satisfying the relations ${ }^{i}$

$$
\left\{\begin{align*}
&\left.\phi^{\left(i_{1}\right)}\left(m^{\left(i_{1}\right)}\right)+\phi^{\left(i_{2}\right)}\right)\left(m^{\left(i_{2}\right)}\right)+\cdots \phi^{\left(i_{i}\right)}\left(m^{\left.(i)^{2}\right)}\right)=0 \tag{8}\\
& \phi^{\left(i_{1}^{\prime}\right)}\left(m^{\left(i_{1}^{\prime}\right)}\right)+\cdots \\
& \cdots \cdots \cdots \cdots \cdots=0 \\
& \cdots \cdots \cdots=0
\end{align*}\right.
$$

each relation of (8) consisting of finitely many terms. \mathbf{M} is an R-submodule of \mathbf{M}^{*} and is called a general subproduct of the $\left\{\mathbf{M}^{(i)}\right\}$, determined by the $\left\{\phi^{(i)}\right\}$ and the relations (8) and denoted by

$$
\mathrm{M}=\left\{\mathrm{M}^{(i)} ; \phi^{(i)} ; \mathrm{F} \mid i \in \mathrm{I}\right\}
$$

Under the conditions that all $\mathrm{M}^{(i)}$ and F are S-torsionfree, M is also S-torsionfree.

Indeed, we have $\mathrm{Ann}_{\mathrm{M}^{(i)}} \mathrm{S}=0(i \in \mathrm{I})$ and $m \mathrm{~S}=\left(\cdots, m^{(i)}, \cdots\right) \mathrm{S}=0$ implies $m^{(i)} \mathrm{S}=0$, and that means that all $m^{(i)}=0$, since the $\mathrm{M}^{(i)}$ are S-torsionfree. But then also M is S -torsionfree.

For each $\mathrm{M}^{(i)}(i \in \mathrm{I})$ we have a decomposition as a subdirect product

$$
\mathbf{M}^{(i)}=\underset{\alpha \in \mathbf{A}}{\times} \mathbf{M}_{\alpha}^{(i)} \quad(i \in \mathrm{I})
$$

where the $\mathrm{M}_{\alpha}^{(i)}$ are also R_{α}-modules and S_{α}-torsionfree.
(1) See e.g. L. Fuchs-F. Loonstra [2] and F. Loonstra [3], [4].

Using the results (i) and (ii) (of p. 4) we see that the diagram (7) induces (for each $a \in \mathrm{~A}$) a diagram (7a)

such that the corresponding R-homomorphisms $\phi_{\alpha}^{(i)}: \mathrm{M}_{\alpha}^{(i)} \rightarrow \mathrm{F}_{\alpha}(i \in \mathrm{I})$ can be considered as R_{α}-epimorphisms, where

$$
m_{\alpha}^{(i)} r_{\alpha}=m_{\alpha}^{(i)} r, \quad \text { if } \quad r_{\alpha}=\pi_{\alpha} r,
$$

and

$$
\phi_{\alpha}^{(i)}\left(m_{\alpha}^{(i)} r_{\alpha}\right)=\phi_{\alpha}^{(i)}\left(m_{\alpha}^{(i)}\right) r=f_{\alpha}^{(i)} r=f_{\alpha}^{(i)} r_{\alpha} .
$$

The epimorphisms $\phi^{(i)}(i \in \mathrm{I})$ and the relations (8) determine (for each $\alpha \in \mathrm{A})$ uniquely the epimorphisms $\phi_{\alpha}^{(i)}$ and the relations

$$
\begin{cases}\phi_{\alpha}^{\left(i_{1}\right)}\left(m_{\alpha}^{\left(i_{1}\right)}\right)+\phi_{\alpha}^{\left(i_{2}\right)}\left(m_{\alpha}^{\left(i_{2}\right)}\right)+\cdots+\phi_{\alpha}^{\left(i_{2}\right)}\left(m_{\alpha}^{(i)}\right) & =0 \tag{8a}\\ \cdots \cdots \cdots \cdots \cdots \cdots & =0 \\ \cdots \ldots \ldots \ldots \ldots & \\ & =0\end{cases}
$$

Indeed, we have $\phi_{\alpha}^{\left(i_{1}\right)}\left(m_{\alpha}^{\left(i_{1}\right)}\right)=\phi^{\left(i_{1}\right)}\left(m^{\left(i_{1}\right)}\right)+\mathrm{K}_{\alpha}$, and addition gives

$$
\phi_{\alpha}^{\left(i_{1}\right)}\left(m_{\alpha}^{\left(i_{1}\right)}\right)+\phi_{\alpha}^{\left(i_{2}\right)}\left(m_{\alpha}^{\left(i_{2}\right)}\right)+\cdots+\phi_{\alpha}^{\left(i_{1}\right)}\left(m_{\alpha}^{(i l)}\right)=0+\mathbf{K}_{\alpha}=0 \in \mathbf{F}_{\alpha}, \quad \text { etc. }
$$

One proves, just as for M , that the R_{α}-modules M_{α}, determined by (7a) and ($8 a$), are S_{α}-torsionfree $(\forall \alpha \in \mathrm{A})$. Summarizing we proved that
2.1. The general subproduct M , defined by (7) and (8), has the following properties:
(i) M is an S-torsionfree R-module;
(ii) (7) and (8) determine (for each $\alpha \in \mathrm{A}$), systems (7a) and (8a), i.e. they determine S_{α}-torsionfree \mathbf{R}_{α}-modules \mathbf{M}_{α} (for each $\alpha \in \mathrm{A}$).

We prove that M can be represented as a subdirect product $M=\underset{\alpha}{\times} M$, and-denoting the canonical projections $\mathrm{M} \rightarrow \mathrm{M}_{\alpha}$ by $\Pi_{\alpha}-$ that $\operatorname{Ker}\left(\Pi_{\alpha}\right)=$ $=\mathrm{Ann}_{\mathrm{M}}\left(\mathrm{R} \cap \mathrm{R}_{\alpha}\right), \quad \alpha \in \mathrm{A}$.

Proof. If $m=\left(m^{(i)}\right)$ satisfies (7) and (8), then $m_{\alpha}=\left(m_{\alpha}^{(i)}\right)$ is a solution of (7a) and (8a). If we map therefore $m \mapsto\left(\cdots, m_{\alpha}, \cdots\right)$, then it is clear that M is a subdirect product of the $\mathbf{M}_{\alpha}(\alpha \in A)$. We prove even that the decomposition $\mathbf{M}=\underset{a \in A}{\times} \mathbf{M}$ is the canonical decomposition corresponding with the canonical
representation $R=\underset{\sim}{\alpha} \underset{\alpha}{x} R_{\alpha}$ of . Therefore we prove that the kernels of the canonical projections $\Pi_{\alpha}: M \rightarrow M_{\alpha}$ are

$$
\operatorname{Ker}\left(\Pi_{\alpha}\right)=\operatorname{Ann}_{M}\left(\mathrm{R} \cap \mathrm{R}_{\alpha}\right)=\mathrm{Ann}_{M} \mathrm{~S}_{\alpha} .
$$

$$
\begin{array}{r}
\mathrm{Ann}_{\mathbf{M}} \mathrm{S}_{\alpha}=\left\{m \in \mathbf{M} \mid m\left(0,0, \cdots, 0, r_{\alpha}, 0, \cdots\right)=0, \quad \forall r_{\alpha} \in \mathrm{R} \cap \mathrm{R}_{\alpha}\right\}= \\
=\left\{\left(\boldsymbol{m}^{(1)}, m^{(2)}, \cdots, m^{(i)}, \cdots\right) \in \mathbf{M} \mid\left(\cdots, m^{(i)}, \cdots\right)\left(0,0, \cdots, r_{\alpha}, 0, \cdots\right)=0,\right. \\
\left.\forall r_{\alpha} \in \mathrm{R} \cap \mathrm{R}_{\alpha}\right\}
\end{array}
$$

and i.e.

$$
m_{\alpha}^{(i)} \in \mathrm{N}_{\alpha}^{(i)}=\mathrm{Ann}_{\mathrm{M}^{(i)}} \mathrm{S}_{\alpha} \quad(i \in \mathrm{I})
$$

Therefore $\operatorname{Ker}\left(\Pi_{\alpha}\right)=\operatorname{Ann}_{M} \mathrm{~S}_{\alpha}=\left\{\boldsymbol{m}=\left(\boldsymbol{m}^{(i)}\right) \mid m^{(i)} \in \mathrm{N}_{\alpha}^{(i)} ; i \in \mathrm{I}\right\}$, where

$$
\mathrm{N}_{\alpha}^{(i)}=\left\{\boldsymbol{m}^{(i)} \in \mathrm{M}^{(i)} \mid \boldsymbol{m}^{(i)} \in \mathrm{Ann}_{\mathrm{M}^{(i)}} \mathrm{S}_{\alpha}\right\}
$$

Literature

[1] L. Fuchs and F. Loonstra - Note on irredundant subdirect products, to appear in: "Acta Math. Acad. Scient.» Hungaricae, Budapest.
[2] L. Fuchs and F. Loonstra (1976) - On a class of submodules in direct products, "Accad. Naz. dei Lincei», 60, fasc. 6, 743-748.
[3] F. Loonstra (1977) - Subproducts and subdirect products, «Publ. Math. Debrecen», 24, 129-137.
[4] F. Loonstra (1981) - Special cases of subproducts, "Rend. Sem. Mat. Univ. Padova ", 65, 175-185.

