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Geometria algebrica. —  On the adjoint system to a very ample 
divisor on a surface and connected inequalities <*). Nota I di A n t o n io  

L a n t e r i (**> e M a r in o  P a l l e sc h i <***), presentata <****) dal Corrisp. 
E. M a r c h io n n a .

R ia ssu n to . — Siano: S una superficie algebrica proiettiva complessa non singolare, 
K un divisore canonico ed H un divisore molto ampio su S. Questo lavoro ha per oggetto
10 studio delPindice di autointersezione (K +  H)2.

Si dimostra, innanzitutto, la disuguaglianza

(I) (K +  H)2 > 0 ,

nell’ipotesi che la superficie S' ottenuta immergendo S mediante il sistema lineare com
pleto IH I non sia uno scroll. Questa disuguaglianza è connessa con alcuni risultati di 
Sommese e Van de Ven sulla generazione del fascio (Ps (K + H). La dimostrazione della
(I) qui fornita, evidenzia, tra le superficie per le quali la (I) vale con il segno uguale, la 
classe delle rigate in coniche.

Successivamente si osserva che, escludendo le superfici per le quali la (I) vale con
11 segno uguale, la disuguaglianza stessa può essere rafforzata. Si dimostra che per una 
superficie S c P w con genere sezionale g > 3 che non sia nè uno scroll nè una rigata in 
coniche, risulta

(II) (K +  H)* > p g +  8 - q - 2 ,

p g e q essendo rispettivamente il genere geometrico e Pirregolarità di S. Si prova pure 
che Puguaglianza nella (II) sussiste se e solo se S è una superficie razionale rigata in cubiche, 
con l’eccezione di due superfici razionali delle quali si descrive il modello piano.

Le disuguaglianze precenti possono essere applicate nello studio delle superfici 
con genere sezionale g assegnato. A titolo di esempio si classificano le superfici con g <  4 
ritrovando e precisando alcuni risultati classici.

Introduction

In the last few years in connection with the problem of rebuilding a proj
ective algebraic manifold by the knowledge of its hyperplane sections, a new 
interest grew out in studying the adjoint system to a very ample divisor on a 
surface. From this point of view the fundamental work by Sommese on the 
adjunction mapping [25] and Van de Ven’s slick paper [27] are the most important 
ones. This paper is mainly concerned with the self-interesection index of a 
divisor adjoint to a very ample one on a surface.

(#) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A. del C.N.R. 
(##) Istituto matematico «F. Enriques », -  Via C. Saldini, 50 -  20133 Milano. 

(###) Istituto Matematico -  Via Università, 12 -  43100 Parma.
(****) Nella seduta del 21 novembre 1981.



A. L a n te r i  e M. P a l le s c h i  On the adjoint system, ecc. 67

Let S be an irreducible smooth complex projective algebraic surface, K 
and H a canonical divisor on S and a very ample one respectively, (K +  H)1 2 * 
the self-interesection index of K +  H and S' the surface obtained by embed
ding S via the morphism associated to the complete linear system | H | .

Firstly (sec. 3) we prove the following fact: I f  S' is not a scroll, then

(I) (K +  H)2 >  0 .

Of course this inequality agrees with the results on the generation of the inver
tible sheaf (9$ (K +  H) in [25] and [27]. Our proof simply consists in studying 
the irreducible components of the divisors in | K -f- H | with the advantage 
that it works also for smooth curves which are ample divisors on S; moreover 
it makes immediately evident the class of the surfaces for which equality holds 
in (I). We have (K +  H)2 =  0 if  and only i f  S' is either a Del Pezzo surface 
or a surface “ ruled in conics ” .

Then we analyze more closely the latter surfaces (sec. 4) in connection 
with the surfaces whose general hyperplane section is a hyperelliptic curve. 
This fact allows us to point out a classical result by Enriques on the surfaces 
with hyperelliptic hyperplane sections and to list the surfaces of P4 in this class.

Afterwards (sec. 5) leaving out the surfaces with (K +  H)2 =  0, the ine
quality (I) can be easily refined. / /  S c  Pn has sectional genus g = g  (H) >  3 
and it is neither a scroll nor ruled in conics, then

(II) (K +  H)*:>i>, +  * - ? - 2 ,

where p g and q are the geometric genus and the irregularity of S respectively. Mo
reover the surfaces for which equality holds in (II) are characterized; they are 
the rational surfaces “ ruled in cubics ”, with the only exceptions of two rational 
surfaces we explicitly describe.

Inequalities (I) and (II) apply to the projective classification of surfaces 
with given sectional genus g. This is a quite classical problem, more or less 
completely treaten for low values of g by many Authors as Picard, Castelnuovo, 
Enriques, Scorza and Roth. For giving an example we classify (sec. 6) the sur
faces with g <  4 by means of our inequalities.

1. Background material

Here we consider only complex projective algebraic varieties. Pn will denote 
the w-dimensional complex projective space. The word surface (curve respec
tively) will mean projective smooth algebraic variety of dimension two (one 
respectively). The symbol D D ' will denote the intersection index of two divisors 
D and D ' on a surface; D2 will be the self-intersection number of D. If C is
a curve on a surface S , D|C will represent the divisor on C (defined mod linear
equivalence — ) cut out by D.
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Let S be either a surface or a curve and D a divisor on S. We will use the 
following standard notations:

@s : the structure sheaf of S;

(9$ (D) : the invertible sheaf of germs of rational functions on S which
are multiples of — D ;

H q (S , 0S (D)): the q-th cohomology complex vector space of S with coef
ficients in 0S (D) ;

hq (D) =  hq (Os (D)) =  dime H* (S , 0S (D)) ;
dim S

x ( 0 s ) =  S  (—  i)«A*(0s);Q=0
|D | :: the complete linear system defined by D ;

C>D ■: the rational map S -----► Pn (n — h° (D) — 1) defined by | D | ,
when n >  0 ;

K òr Ks : a canonical divisor on S ;

i D 1 • C : the linear series which the complete linear system | D | on a surface 
S cuts out on a curve C e  S;

Pv = Pt (®) : the geometric genus of a surface S;

q =  q{ s) : its irregularity;

^(C ) : the genus of a curve C.

A surface S is ruled if it is birational to the product B X P1 of a curve B 
and the projective line; S is rational if it is birational to P2. By writing S c P w 
we mean that S is not contained in any hyperplane. If  the linear system cut 
out on S by the hyperplanes of Pw is complete we say that S is linearly normal.

From now on S will be a surface, H a general element of a very ample com
plete linear system | H | , d —  H2 and g — g (H). Sometimes we will identify 
S with the surface S' =  0 H (S): in that case d can be thought as the degree of S' 
aiid H as a general hyperplane section of S'. If S c  Pw, H will always denote 
a general hyperplane section of S; g = g ( H )  will be called sectional genus of S.

Consider the exact residue sequence

(1.1) 0 —>• 0S (K) 0S (K -f H) —* On (Kh) 0.

By Kodaira vanishing theorem, (1.1) induces the exact sequence

(1.2) 0 H° (S , 0s (K)) -* H° (S , 0s (K +  H))

H° (H , <Pn (Kh)) ^  H1 (S , <PS (K)) -> 0 , 

involving the formula

(1.3) A°(K +  H ) = /> a +  ^ - ÿ .
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Remark 1.1. One has g > q;  moreover if g =  q then p g =  0. In fact the 
homomorphism ß in (1.2) is surjective and so g > q .  Suppose g =  q ; then ß 
is also injective; therefore l m a  =  0 i.e. |K  +  H | - H  =  0 . As H is very 
ample (really since H is ample and h° (H) >  2 ), | K + - H |  =  0 too and 
by (1.3) we are done.

Notice that Remark 1.1 and (1.3) force the following trivial fact.

Remark 1.2. If h° (K +  H) <  1 and g ^ q y then p g —  0 and g =  q +  1.

Remark 1.3. Suppose q =  0 and g >  2; then the complete linear system 
I K +  H I has no fixed components and is base point free. In  particular the
rational map ® k +h : S -----► Pn is a morphism a). By absurd let p  be either a
base point of | K +  H | or a point lying on a fixed component of its and let H 
be a general element of | H | through p. In  this case p  is a fixed point of the 
series | K  +  H | - H. As q =  0, the exact sequence (1.2) becomes

0 -  H° (S , 0s (K)) -  H° (S , 0s (K +  H)) H° (H , (K~)) 0,

hence | K +  H | • H — | K g | . But it is well known that | Kg | is base point free.
Now consider the exact sequence

0 0S -* 0s (H) —* 0H (H|h) —* 0

and the induced exact cohomology sequence

(1.4) o -> H° (S , 0S) -  H° (S , 0S (H)) -* H° ( H , 0H (H |h)) -  

—* H 1(S , &s) -> H 1 (S , (H)) ->• H1 (H , (HJh))

Remark 1.4. If d >  2 g — 2 then S is a ruled surface; moreover /^(H) q.
Indeed genus formula gives H K = 2 <§f — 2 — d <  0 and then (S) =  

h° (nK) =  0 for any integer n >  1 ; hence S is a ruled surface (e.g. see [1], 
p. 112). Moreover H |h is a non-special divisor so (1.4) implies it (H) <  q.

By geometrically ruled surface we mean a surface S endowed with a morphism 
7T : S B on a curve B such that 7t“ 1 (b) ~  P1 for any b e B. By Noether- 
Enriques theorem (see [1], p. 35) such a surface is a ruled one. Notice also that 
9 = g (  B).

By the theory of minimal models and by the structure theorem of birat- 
ional morphisms (see [24], pp. 85-100, [11], pp. 411-412] the following facts 
are known: any ruled surface S—not isomorphic to P2—dominates a suitable 
geometrically ruled surface S0 by a morphism rj : S -* S0. Let s be the number 
of blowings-up by means of which 7) factorizes. One has

K§ =  K |0 — î  , K |0 =  8 (1 — q) , Kp2 =  9 .

All these facts can be summarized in the following.

(1) More generally this result holds if g =f=<7 (see [25], p. 387).
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Remark 1.5. Let S be a ruled surface. If S ^  P 2, then K | <  8 (1 — q), 
equality holding if and only if S is a geometrically ruled surface.

Now let S0 be a geometrically ruled surface over B and denote by C0 a 
fundamental section, i.e. a section of minimal self-intersection number — e =  
=  Co. The integer e is named the invariant of S0. Call F a fibre of iz. Then 
for any divisor D on S0 one has (see [11], p. 370) D =  aC0 +  ÄF (a , b e Z), 
where i=  denotes numerical equivalence. In particular (see [11], p. 373).

(1.5) K -  — 2 Co +  (2q —  2 — e) F .

Now let X c= Pn be a geometrically ruled surface over B. If any fibre F of X 
is a line, we say that X is a scroll over B. An easy computation shows that 
a geometrically ruled surface X c  Pn is a scroll if and only if its hyperplane 
divisor has the form

(1.6) H =  C0 +  m¥ (m e  Z ) .

Let Y c  Pn be a surface ; if Y is not a scroll and if there exists a morphism 
h : Y -> B over a curve B whose fibres are conics we say that Y is ruled in conics. 
By Noether-Enriques theorem (see [1], p. 35) such a Y is ruled. Moreover, 
Y being irreducible, it admits only a finite number § of singular fibres and each 
one of them consists of two intersecting lines. If § =  0, Y is a geometrically 
ruled surface. In  this case we say that Y is geometrically ruled in conics (2) *.

Let Y c  Pw be a geometrically ruled surface. It is straightforward to 
verify that Y is geometrically ruled in conics if and only if its hyperplane 
section has the form

(1.7) H ËËÊ2 C0 +  mF (m e  Z ) .

2. Preliminary lemmata

Consider a surface S and a general element H of a very ample linear system 
I H I on S; put g = g ( H ) .

When I K +  H | ^  0 , any divisor D e | K +  H | can be represented in 
the form

r

(2) Notice that the quartic surface £  =  <Dh (P1 X P1) C P5 where H =  C0 ■+ 2 F
admits the fibration in conics corresponding to the pencil | C0 I. Nevertheless £  is not
ruled in conics, being a scroll. On the other hand it can be seen that £  is the unique
geometrically ruled surface with this property.
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where the C /s  are the irreducible (possibly repeated) components of D 
Obviously

(2.1) Da =  (K +  H)2= S c ! +  E c *c ; =i = l

=  t ( c ? + C i i ; c d  =  i ; c i D .
i = 1 \ J i= 1

Lemma 2.1. Suppose either 1) h° (K +  H) > 2  or 2) h° (K +  H) =  1 and 
the divisor D e | K +  H | has two distinct irreducible components at least. Then

(a) every addendum Q  D in (2.1) is non-negative ;

(b) (K +  H)2 >  0 .

Proof. Of course it is enough to prove (a). Suppose r == 1, i.e. D =  Cx; 
as D varies in a pencil at least by assumption, one has D 2 =  DCX >  0 obviously. 
Now suppose r >  1. If C2 >  0 then (a) holds trivially for the addendum

Q D-=C? +  C, £ ( V

On the contrary suppose C | <  0; we have Q  D =  C* (K +  H) >  C* K +  1 
and by genus formula C* K =  2 g (C^) — 2 — Cf >  — 2. This shows that 
(a) holds in this case too.

m
Lemma 2.2. Consider an effective divisor L =  ^  ri L  ̂ (L -’s being the

ï=i
irreducible components) on S such that Lf =  — 1, L* H =  1. (z =  1 , • • - , m) 
and =£ L ; for i 7^/. Suppose b i L =  0 for any i. Then for each i there exists 
an index ir (1 <  i' <. m) such that L  ̂ L^ =  1 , L$ h h =  L^, LA =  0 for any 
h ^ i , ï  and r\ =  rif\ in particular m is even.

Proof. Our assumptions imply 0 <  b i L  ̂ < 1  for i -=f=.jy as 3>H transforms 
each in a line; moreover in view of the equality

0 =  Li L =  Li ( r4 Li +  2  r, >

there exist p components L ^  , • • •, b jp of L such that 

(2-2) U = r h +  ■■■ +  rjp;

(2.3) L i L ^  —  L i L ^ l .

Obviously for any other LA (h , • • •, jp) one has LÄ =  0. Consider the 
component L ^  and the equalities

L$ L =  L  ̂ I r i L  ̂ -j- S o
\  j+i

L h  L =  L h  I rh L h +  2  rj

 ̂ — — ri +  rh  Li L^ +  s — 0 ,

Lj-i =  — rjlL +  ri L^ L̂  +  s' =  0 ,
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where £ and s ' are non-negative integers. There follows <  ri and
Ti <  rjx\ so (2.3) implies ri =  rh and, by (2.2), p — l. Now put ir— j x\ 
to conclude it is enough to show that LÄ =  0 for h ^ i , but this is 
immediate in view of the symmetry between the indexes i and if.

Lemma 2.3. Suppose It (K -j- H) >  2 and (K H)2 =  0. Then any di
visor D e I K -fi H I can he expressed by means of its connected components F  ?s 
(z =  1 , . .  -ys) in the form

D =  Ì > iF «1=1
with H =  2.

Proof. By Lemma 2.1, (a), the assumption (K -f iH )2 =  0 implies

(2.4) C« D =  C, K +  C« H =  C? +  C, £  C,. =  0

for any i =  1 , • • •, s. Therefore C2 <  0 and Q K  =  — Q H  <  — 1 and then

(2.5) — 2 < 2 g  (C{) — 2 =  Cf -fi Q  K <  — 1 .

On the other hand one concludes that C2 +  Q  K =  — 2, since C2 -fi Cfi K 
is even. As Ci K <  — 1, there are only two possibilities:

(2.6) C? =  0 and C4 K =  — 2 ( =  — Q  H) ;

(2.7) C* =  — 1 and C< K =  — 1 ( =  — Q  H ) .

For any component Q  verifying (2.6) we have (fi Cfi =  0 for any j , by (2.4). 
Therefore F  ̂=  Ci is a connected component of D and F  ̂H =  Cfi H =  
— (fi K =  2. So if all the Cfi’s fulfill (2.6), the Lemma is proven. Otherwise 
if there exists a (fi verifying (2.7), consider the divisor L obtained from D by 
deleting its (possible) components satisfying (2.6) and rename L /s  the remaining 
components (fi’s. In  view of (2.4) it is easy to see that L  ̂L =  0. By applying 
Lemma 2.2 we see that F =  L* -fi L*, =  (fi -fi (fi, is a connected component 
of L, hence of D, and FH =  2, by (2.7).

For the sequel we need to know what happens when A0 (K +  H) <  1. 
In sec. 3 we will analize the case g =  q\ now we are going to show

Lemma 2.4. Suppose g q and h° (K +  H) <  1. Then either

a) d>H (S) is a Del Pezzo surface, or
b) S is a ruled surface with q =  2 and its fibre F verifies FH =  2. 

Proof. By means of Remark 1.2, our assumptions imply

(2.8)

OII■»i

and

(2.9) £ =  ? +  1
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If q —  0, Remark 1.4 and (1.4) show that Oh (S) is a rational surface of degree 
d in F*, hence case a) occurs. Now suppose q >  1 ; in view of (2.8) the image 
of the Albanese map a : S —► Alb (S) is a curve B of genus q (see [1], pp. 85-86). 
Since H cannot be a fibre of a, the morphism a |H : H -* B is surjective; let 
m be its degree. As g ^  qy one has m >  2. By Riemann-Hurwitz formula the 
total branching order of a |H is r =  2 q (1 — m) +  2 m. So, as r >  0, one 
deduces

(2. 10) q <
m 

m -— 1

which means q <  2. Thus g =  2 or g =  3, by (2.9). In  both cases d =  H 2 >  
>  2 g — 2 (3) and S is ruled by Remark 1.4. On the other hand it cannot be 
<7=1;  indeed, for a smooth curve H of genus g contained in an unrational 
ruled surface, which is not a section of a geometrically ruled surface, it must 
be H 2 <  4 £ — 4 (see [12], Corollary 2.4).

3. T he first inequality and a characterization of the surfaces

RULED IN CONICS

In  this sec. we study the self-intersection number (K +  H)2. We start 
with a rather classical characterization of the surfaces with g =  q. First of all 
we have the following

Remark 3.1. There results (K +  2H)2 > 0 .  It is enough to prove this 
inequality when A° (K -f  2 H) <  1, in view of Lemma 2.1. To do this con
sider the exact sequence

0 -> 0s (K +  H) 0s (K +  2 H) «h (Kh +  H |h) 0 ;

by Kodaira vanishing theorem one gets h° (K +  2 H) =  h° (K +  H) +  
+  A°(Kh +  H |h). This formula expresses h° (K +  2 H) as a sum of non
negative integers ; so the inequality h° (K +  2 H) <  1 involves h° (Kh +  H |h) <  1 
and by Riemann-Roch theorem, this reads g ■— 1 +  H 2 <  1. There follows 
H 2 <  2 i.e. Oh (S) is either P 2 or the quadric surface and our inequality 
holds trivially in both cases.

P ro p o sitio n  3.1. Equality g = q  holds if  and only i f  Oh (S) is either P2, 
the Veronese surface, or a scroll.

(3) Identify S with <DH (S) and think of H as a smooth hyperplane section of S. 
We have d  =  H2 >  4, since g >  2, and, if d =  4, H is a plane curve of genus three. In 
this case S is a quartic surface in P3 and then it is regular. So, as we are dealing with 
irregular surfaces, it is d  >  4.
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Proof. For each surface Oh (S) listed before one has g == q trivially. 
Conversely, suppose g =  q\ then Remark 3.1 and genus formula give

(3.1) 0 <  (K +  2 H)2 =  K 2 — 8 (1 — q ) .

We continue the proof in two steps.

Step 1. S is ruled. Indeed, if £ =  0 , S is rational by Noether-Enriques 
theorem; if g =  1, since d =  H2> 0  =  2 g — 2, S is ruled by Remark 1.4. 
Finally suppose g =  q'>  2; then Remark 1.1 involves p g =  0. Taking also 
into account (3.1) and Noether formula ([9], p. 601), the topological Euler- 
Poincaré characteristic of S is

X (S) =  12 x (0S) K2 <  4 (1 — q) <  0 ;

so S is ruled by a classical theorem due to Castelnuovo and De Franchis (see 
[2], p. 213).

Step 2. Suppose S ~  P"; then H =  kL  , L being the effective generator 
of the Picard group of S. As q =  0, condition g =  q implies either k =  1 or 
k =  2. In  the former case Oh (S) =  P 2 whilst in the latter one Oh (S) is 
the Veronese surface. Now suppose S is not isomorphic to P2; then by 
Remark 1.5 and formula (3.1) one gets K 2=  8 (1 — q). Once again Remark 1.5 
shows S is a geometrically ruled surface. In this case H can be written as 
H zz aC0 +  b¥ (see sec. 1). Recalling (1.5), genus formula supplies

(3.2) 2 g —  2 =  H 2 +  HK  =  (a —  1) (2b — ae) + 2 a ( q — l).

Now Oh (S) is a scroll if and only if (1.6) holds, i.e. if and only if a —  1. Sup
pose <z=7^1; then, as g =  q, (3.2) involves ^ =  0 ,^  =  0 and 6 = 1 ,  in view 
of the ampleness conditions on H (see [11], pp. 380-382). But in view of the 
symmètry between C0 and F, when q ~ e =  0 , 0 H (S) is a scroll in this 
case too.

Now it is possible to prove

T heorem 3.1. Let S be a surface, H a very ample divisor on S and suppose 
Oh (S) is not a scroll; then

(3.3) (K +  H)2 >  0 ,

equality holding if and only if  Oh (S) is either a Del Pezzo surface or ruled 
in conics.

Proof. Let us start by proving (3.3). If h° (K +  H) >  2, Lemma 2.1, (b) 
shows (3.3). Suppose h° (K +  H) <  1; if g =  q our assumption and Propo
sition 3.1 imply 0 H (S) is either P2 or the Veronese surface and such surfaces 
fulfill (3.3) obviously. So we have only to consider the case g ^  q when
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h° (K +  H) <  1. By Remark 1.2 one has p g =  0 and g — q -f- 1 ; so 
h° (K +  H) =  1 by (1.3). There are three cases:

/)■ K -f- H — 0; thus equality holds trivially in (3.3);

ii) the effective divisor D € | K +  H | has two distinct irreducible 
components at least; then (3.3) holds by Lemma 2.1;

Hi) the effective divisor D e | K +  H | can written as D =  nC (n >  1), 
C being irreducible ; in this case we have C (K +  H) =  CD =  nC2, so 
CK =  nC2 — CH, and genus formula gives — 2 <  2 g (C) — 2 =  C2 +  CK =  
=  (n +  1) C2— CH. Since H is very ample the previous inequality involves 
(n +  1) C2 >  — 1. But (n +  1) C2 7^ — 1 of course. Then C2 >  0 and so

(K +  H)2 =  D 2 =  n* C2 >  0 .

Now we are going to characterize equality in (3.3). If 0 H (S') is a Del Pezzo 
surface then K +  H =  0 (see [11], p. 401) and then equality holds in (3.3) as 
previously stated in /). Suppose <E>H (S) is ruled in conics; then S admits a 
fibration whose general fibre F verifies TH =  2. Then there exists a morphism 
Y) : S —> S0 where S0 is a geometrically ruled surface and rj factorizes by means 
of S blowings-up cr/s with centers p /s  belonging to distinct fibres of S0. Let 

c  S be the exceptional curve corresponding to pi (i =  1 , • • - , 8). Obviously 
E i H =  1 (/ =  1 S) since FH =  2, and C =  y] (H) is a two-secant curve 
in S0; this means that C =  2 C0 +  bF. Recalling also (1.5) one deduces

(3.4) (KSo +  C)2 =  0 .

Moreover | H | corresponds to the linear system | C — p1 — • • • — ̂ 1  on S0 
(in the sense of [11], pp. 395-396) and y)* C =  H +  Ex +••■• +  E8. As 
K — Y)* KSo +  Ej +  • • • +  E§, one gets immediately K -f- H =  y)* (Ks0 +  C) 
and then (3.4) implies (K +  H)2 =  0. Conversely suppose (K +  H)2 =  0. 
Then, if A °(K |+H ) >  2, the rational map Ok+h is a morphism over a curve B. 
Indeed call Z and M the fixed and the moving part of | K +  H | respectively. 
Then K +  H -  Z +  M and (K +  H)2=  (K +  H) Z +  ZM +  M 2. Of course 
ZM >  0 and M 2 >  0; moreover (K +  H) Z >  0, by Lemma 2.1, a). So 
(K +  H)2 >  M 2. As (K +  H)2 == 0, we have M 2 =  0 and then <Ï>k+h =  
is a morphism over a curve B. Consider now the following Stein fac
torization

The general fibre F of tc is a connected component of a divisor D g | K +  H | . 
Hence, by Lemma 2.3, the morphism n : S -> B exhibits S as a ruled 
surface over B with FH =  2. Finally, if A°(K +  H ) < 1 ,  as we supposed
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(K +  H)2 =  0, Oh (S) can be neither P2 nor the Veronese surface, and so, 
in view of Proposition 3.1 and Lemma 2.4 we are done.

Note that if we simply suppose H is a {smooth) curve in S which is an 
ample divisor and h° (H) >  2, the most part of our results continue to hold, 
within obvious modifications. In particular, Proposition 3.1 becomes: equality 
g — q holds i f  and only i f  either 8 ~  P2 and &s (H) =  0P2 (n) , (n =  1,2) ,  
or S is a geometrically ruled surface and H is a section. All lemmata in sec. 2 
continue to hold unless Lemma 2.4. Nevertheless the same argument there 
used proves the following. Assume g^Lq   ̂ H2 >  5 and h° (K +  H) <  1. Then 
either S is a Del Pezzo surface and K == — H or 8 is a ruled surface with q =  2 
and H is a 2-section.

Using these facts, Theorem 3.1 can be restated in a more general form.

T heorem 3.2. Let S be a surface and H a {smooth) curve in S which is 
an ample divisor and such that h° (H) > 2 .  I f  S is not a geometrically ruled 
surface having H as a section, then (K +  H)2 > 0 .  I f  further, either H 2 >  5 
or H is very ample, then equality holds i f  and only i f  either 8 is a Del Pezzo 
surface and H == — K or S is a ruled surface and H is a 2-section.

Whenever we apply the previous results to the hyperplane sections of an 
embedded surface Theorem 3.1 has the following.

Corollary 3.1. Let X c  PN be a surface of degree d and sectional 
genus g. Then

I) X is a scroll i f  and only i f  Kx =  8 (1 — ̂ );

II) i f  X is not a scroll one has

(3.5) < * < 4 *  — 4 +  K i ,

and equality holds i f  and only i f  X is either a Del Pezzo surface, a projection of 
its or ruled in conics.

Remark 3.2. Let X c  PN be a surface of degree d and sectional 
genus g. Suppose X is ruled in conics; then the ruling has

8 =  8 (1 — ?) +  4 ( ^ — 1) — d

singular fibres. Suppose tz : X -> B is the morphism exhibiting X as ruled in 
conics; obviously g (B) =  q. If  F  is a general fibre of n and F^ (z =  1 , • • - , 8) 
is a singular one, then the Euler-Poincaré characteristic of X is (see [1], 
p. 156).

X (X) =  X (B) X (F) +  S  (X (Fi) -  X (F)),i = l

i.e. x (X) =  4(1 — q) +  8. On the other hand Noether formula and Corollary 
3.1 give x (X) =  12 x (0x) — Kx = 1 2  (1 -  q) +  4 {g -  1) -  d.

The references of this Nota I can be found at the end of the same titled 
Nota II  which is integral part of this work.


