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Geometria. — Complements of analytic subvarieties and q-complete 
spaces. Nota di E d o a r d o  B a l l ic o  (*>, presentata <**) dal Corrisp. 
E . V e s e n t in i .

R iassunto. — Si dimostra che il complementare X \Y  di un sottospazio analitico 
chiuso localmente intersezione completa di codimensione q di una varietà di Stein è 
^-completo.

Introduction

We want to study the problem of the pseudoconvexity of the complement 
of a closed analytic subvariety Y in a Stein manifold. It is well-known that this 
problem is completely solved if the subvariety Y has codimension 1 in X. In 
the general case the problem was studied by G. Sorani and V. Villani in [8], 
prop. 1. Their proof did not give the best result because with their method one 
direction of positivity for the Levi form of an exaustion function is lost. It 
seems to us that their proof can be strengthened and the best result obtained, 
because the lost direction of positivity is a direction more or less along the 
gradient of the exaustion function.

But in the meantime Fritzsche in [4] and [5] gave very good results of con
vexity for the complement of subvariety with positive normal bundle in a compact 
space. Fritzsche’s method is very powerful and we show that using it we can 
solve our problem.

We use Fritzsche’s notation as far as possible. In particular, as in [1], in 
this paper 1-complete space is equivalent to Stein space and 1-convex function 
means strictly plurisubharmonic function.

We consider the following situation. X is a complex manifold and Y is a 
locally complete intersection subspace of codimension q of X.

In the first paragraph we show that if X is a Stein manifold, the X \ Y  is 
^-complete. The proof uses the positivity of any vector bundle on a Stein space 
and an extensione of Satz 4.10 in [4] about g-concave linear spaces from the 
case of a compact space to the general case.

In the second paragraph we study the same problem when X is not a Stein 
space. Our first result concerns a very particular case but does not assume an 
ambient Stein space. Theorem 2 is the last result of the second paragraph. 
It says that the complement of a ^-codimensional locally complete intersection 
Y in a r-complete manifold X is (q r — Incomplete if X is an open subset
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of a Stein space and the normal bundle of Y in X is generated by global sections. 
In Theorem 1 and 2 the ambient variety X is always non singular, although 
the propositions used for the proofs are true even for non reduced complex 
spaces. The hypothesis of non singularity can be relaxed. For example it is 
sufficient to assume that the singular locus of X does not intersect Y.

§ 1. We use the notation of [4]. For us the word “ differentiable ” means 
“ of class C°° ”. Let X be a complex space. A differentiable function /  on X is 
^-convex if for any x € X the Levi form Lew*. ( /)  of /  at the point x has at most 
q — 1 non-positive eigenvalues. In particular a differentiable function /  on X  
is 1-convex if and only if it is strictly plurisubharmonic.

A complex space X is ^-complete if there exists a differentiable, positive 
function /  on X which is ^-convex and exahustive, i.e. such that the sets 
{^ e X  : /(# )  <  c} are relatively compact for each positive real number c.

A complex linear fiber space (or a linear space) is a quintuple (E , 71, a , ß , co) 
where 7r : E —* X, a : E X x E E, ß : C X E —* E and coE : X —* E are holo- 
morphic maps such that the natural diagrams are commutative (here a is the 
addition, ß is the scalar multiplication, coE is the zero section). Therefore the 
projection n : E -* X is a family of vector space parametrized by X. There 
is a canonical antiequivalence between the category of linear spaces on a fixed 
complex space X and the category of analytic coherent sheaves on X. For any 
analytic coherent sheaf on X, we write Lin (!F) for the associated linear space. 
By definition the tangent bundle T(X) to X is the linear space Lin(£ix) associated 
to the cotangent sheaf Qx. For more details on the definition and che elementary 
properties of a linear space, the reader can see [4], [5] or [3].

Let 7T : E - > X be a linear space on a complex space. For each z;eE , there 
is a canonical exact sequence

where x : iz (v). The image of E* in TE,V is the relative tangent bundle 
T (E/X)v of tu at v. We put Bv (E) : =  Im Tv (n) c: Tx For each pseudo- 
trivialization cp : E|^-i(U) U X C3 of E around x, we obtain a splitting 
Te>v a  T (E/X) © B?> (E).

D efinition 1. Let X be a complex space, ïï : E ->  X be a linear space. 
E is said r-positive, if there exists a scalar product h on E such that for each 
# € X, for each v e Ê . \  {0} and for any pseudotrivialization 9 around the point 
x, the Levi form Levv (h) has a most r — 1 non-negative eigenvalues on the 
vector space B ^  (E).

Let 71 : E X be a linear space on a complex space and t e : E - ^ T  (E) 
be the canonical embedding. For each open set M c  E and for each differentiable 
function /  on M, we put Ff  {v) : =  (d/)v ( t e (v)) for v e M.  In this way 
Fritzsche defines a differentiable function F / on M: the differential of /  along 
the fibers of E.

5. — RENDICONTI 1981, voi. LXXI, fase. 6.
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D efinition 2. Let X be a complex space and n : E -* X  a linear space. 
E is said ^-concave if there exists an open neighborhood U of the zero-section 
coE (X) such that :

a) for any x e X , U D Ex is a relatively compact and starred neigh
borhood of the zero in ;

b) there exists an open neighborhood V of the boundary S>U of U and 
a ^-convex function s on V with V n  U =  {u e V : s (v) > 0 }  and with 
Fs (v) 7  ̂0 for each v e 3U.

Proposition 1. Let X be a Stein space and E be a linear space on X. 
Then E is \-positive.

The proposition above was proved by S. Nakano in [6] when X is a Stein 
manifold and E is a vector bundle. The proof given in [7] can be easily 
extended to the general case.

Proposition 2. Let X be a complex space and tc : E —> X be a linear space. 
We put q : == sup dimc (E )̂. I f  E is r-positive, then E is {q -\- r — \)~concave.

x e X

Proof. We extend to the general case the proof given in [4], Satz 4.10, when 
X is a compact space. Let A be a scalar product on E such that h defines the 
r-positivity of E. Let v0 be a point of E. We put s : =  h — h (v0) and
pu : = s e u\  where u is a positive differentiable function on X.

We put W : =  {v e E : pu (v) <  0}. W is a neighborhood of the zero- 
section ooE (X) of E and for each relatively compact open subset U of X, ^  (U) 
is relatively compact in E. In the proof of [4], Satz 4.10, u is a sufficiently big 
costant. For each point v e 3W the differential and the Levi form of pu and 
p(M)v are the same because every term in which a derivative of u appears is 
multiplied by s (v) — 0. Fritzsche proved that we have Fs (*;) 7  ̂0 for each 
v e 3>W and that for each point x e X  there exists a positive constant c0 (#) such 
that if c >  c0 (x), then pc is (q -f r — l)-convex at every point of 2W fi Ê ..

In our case it is sufficient to take for u a differentiable function with 
u(x) >  c0 (#) for each x e X. In fact for such a function pu is (q -f- r — 1)- 
convex at every point of 3W and therefore also in a neighborhood of 3W.

Thus pu , W and V satisfy the conditions a) and b) of Definition 2 and 
Proposition 2 is proved. □

Let X be a complex space and Y be a closed, analytic subspace of X. Y is
defined by a coherent sheaf of ideals The normal bundle of Y in X is by
definition the linear space on Y associated to the coheren $Y"module 2T\&j'y.

As a corollary of the results proved by Fritzsche in [4] we obtain the foll
owing theorem.

T heorem 1. Let X be a Stein manifold and Y be a closed analytic subspace 
of X. Let N be the normal bundle of Y in X. We put q : =  sup dim (N^). Then 
X \  Y is a q-complete complex manifold. Xe:r
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Proof. From propositions 1 and 2 it follows that N is a ^-concave linear 
space. From [4], Theorem 5.4, the main theorem of the cited paper by Fritzsche, 
it follows that there exists a differentiable function /  : X \  Y —> R+ and an open 
neighborhood M of Y in X such that:

a) for each x e M \  Y, the Levi form of /  Lev̂ . ( / )  has at most q — 1 
eigenvalues <  0 ;

b) if x0e Y  and {xw} is a sequence of points in M \ Y  which converges 
to x0, then the sequence { f ( x u)} is unbounded.

Let p  be a positive, 1-convex differentiable function on X such that for 
every c e R+ the set Xc : ~ { x  e X  : p  (x) <  c} is relatively compact in X. Let 
M 'c  M be a neighborhood of Y with 3M' c: M. For each compact subset K 
of X, the Levi form o f /L e v ( / )  has in K fi (X \M ')  bounded eigenvalues and 
in K n  ( M \Y )  at most q — 1 negative eigenvalues. With a standard technique 
used in [2] and in [9] (for example it is sufficient to modify the statement of 
Lemma 1 in [9]) we obtain a differentiable, increasing function : R —* R, with 
MO) >  0 , lim  ̂(0  — 4  °°  and such that the function 4 (p) +  /  is ^-convex

+ o o

in X \ Y .  Since for any c e R the set { x e X \ Y  : 4 (p (x)) +  f (x )  <  c} is 
relatively compact in X \  Y , X \  Y is ^-complete. □

Corollary. Let X be a Stein manifold and Y  be a closed analytic subspace 
of X. I f  Y  is a locally complete intersection of codimension q in X, then X \ Y  is 
a q-complete complex manifold.

This problem was studied by G. Sorani and V. Villani in [8]. In their 
terminology a ^-complete space is a (q -f- Incomplete space in our terminology. 
Therefore the Proposition 1 of [8], which in our terminology says more or less 
that, if Y is non singular, then X \ Y  is (# +  l)-complete, is weaker than our 
corollary above. It is easy to see that the ^-completeness of X \ Y  is the best 
result. If Y is! not a locally complete intersection in X, then the corollary above 
is not true. G. Sorani and V. Villani gave an example in which the corollary 
above is not true. In this example there exists a point y  of Y is which we have 
embdim^ (Y) =  dim  ̂X. They take X =  C2n, n >  1, with coordinate z1 , • • •, z 2n 
and Y the union of the linear subspace dehnined by the equations z 1— • • •
• • • =  z n — 0 and of the linear subspace defined by the equations z n+1 =  • • •
• • • =  z %n =  0. They prove with a Mayer-Vietoris exact sequence that we have 
H2w-1 ( X \ Y  , & x \y )  9^ 0 and in particular X \ Y  is not (2 n —  Incomplete. 
In theorem 1 and in its corollary the condition of nonsingularity of X can be 
weakened. For example the same proof applies if the singular locus of X does 
not intersect Y.

§ 2. We want to prove with a direct calculation the ^-concavity of some 
linear space. Our purpose is to obtain results similar to those of the preceding 
paragraph when X is not a Stein space.
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P ro p o sitio n  3. Let X he a complex space with a strictly plurisubharmonic 
and upper bounded differentiable function. Let E be a trivial vector bundle of rank 
q on X. Then E is a q-concave vector bundle.

Proof. Let u be a strictly plurisubharmonic function on X with u <  — 1. 
The total space of E is X X C9. Let n : E -> X  be the projection. Let z  =  
=  (#!, • • •, zq) be the coordinates on Cq. The function s : E \  <oE (X) R,

given by s (# , z) = +  u (x)y defines the ^-concavity of X.

Let U be defined by U : {(x ,^ ) e E  : s ( x , * ) >  0} U co e (X). For each 
x e X , U n  Ê . is relatively compact in Ê . and it is a starred neighborhood of 
zero in Ê .. Furthermore s is ^-convex. We take (x , #) e E \  ooE (X). We

Q
put p =  2 * i f <.

i= 1
Then we have

92-------   s
dZa

92
9 â 9£ß

--- S<x0 p +  2 £a #0
P3

and therefore we have

Lev(z,z) (s) =

Levw (u)

0

0

ôcß P H" 2 Za Zq

Let L be the subspace T (X)^ tangent to X at the point x and embedded 
in the tangent space T (E)^*) of E at the point ( x , z). Obviously we have 
T  (E)(.r,z) — L x C S and Lev(a.,2) (s)|L ^  Lev(a;) (u) is positive definite. Let H be the 
linear subspace of T  (E)(iCj2) generated by L and the point (0, • • - , 0 , zx, • • - , zq). 
H has codimension q — 1 in T (E )^) because (x > z) <£ coE (X) i.e. we 
have z  7  ̂0.

Lev(iC>2) (E),h is definite positive. In fact we have

(0 , • •' •, 0 , zx , • • •, zg)
flLevix) (u)

0 ■ Saß p +  2  Z$ I 1 2l

■ ( S  *«) p +  2  S  ^  * 0  1
-------- L-------— ÏË-----------------------=  +  — >  0. □

As an application of the proposition above we obtain the following result.

P roposition 4. Let X be a r-complete manifold and Y be a closed analytic 
subspace of X. Suppose that Y is a locally complete intersection of codimension 
q with trivial normal bundle. Suppose that there exists a differentiable function 
on Y which is strictly plurisubharmonic and upper bounded.
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Then X \ Y  is (r +  q — Incomplete.

Proof. From proposition 3 it follows that the normal bundle of Y in X is 
^-concave. From Theorem 5.4 in [4] the proof of Proposizion 4 follows in the 
same way as in the second part of the proof of Theorem 1. □

The condition that Y has a strictly plurisubharmonic function which is 
bouded from above is satisfied if Y is an open subset of an hyperconvex space 
and in particular if Y is a relatively compact open subset of a Stein space. But 
when the space X, or at least Y, is contained in a Stein space stronger results 
can be obtained by the following easy remark. The restriction of a 1-positive 
linear space on X to an open subset U of X is 1-positive. Therefore the trivial 
line bundle on any open subset of a Stein space is 1-positive. It follows easily 
that any vector bundle generated by global sections is 1-positive on an open 
subset of a Stein space of bounded dimension. Therefore we obtain immedia
tely from Proposition 2 and the standard technique used in the proof of Theo
rem 2 and Proposition 4 the following theorem.

T heorem 2. Let X be a r-complete open submanifold of a Stein space and Y 
be a closed analytic subspace of X. Suppose that Y is a locally complete intersection 
in X of codimension q with normal bundle generated by global sections. Then X \ Y  
is a {q +  y — 1)-complete manifold.
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