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Logica matematica. — Craig's interpolation theorem, in compu
tation theory. Nota di D a n ie l e  M u n d i c i , presentata <*) dal Socio 
G. Z a p p a .

Riassunto. — Si espongono alcuni risultati, provati dall’Autore negli articoli citati 
nella bibliografia, a proposito della complessità del teorema d’interpolazione di Craig: 
con ciò si intende la relazione tra la lunghezza (cioè il numero di simboli) della formula 
X e la lunghezza di 9 e 41, ove 9 —► 4* è un’implicazione valida, e x è un interpolante, come 
esibito dal teorema di interpolazione stesso. Si intende altresì sottolineare la rilevanza dello 
studio della complessità dell’interpolazione per far luce su alcuni importanti problemi 
della teoria degli algoritmi, con particolare riferimento al problema della complessità 
dei sistemi naturali di deduzione nella logica delle proposizioni (essenzialmente, problema 
PNP), oppure il problema di correlare tra loro diverse misure della complessità di una fun
zione, ad esempio, il tempo occorrente ad una macchina di Turing per calcolare la funzione, 
rispetto al tempo occorrente ad un circuito « logico ».

1. Introduction

Craig’s interpolation theorem [5] yields, for any valid implication 9 -> ^ 
an interpolant, i.e. a sentence x such that both 9 —>* x an<3 X 41 are valid, but 
X only uses the primitive notions (viz. the non logical symbols, or the boolean 
variables in sentential logic) which jointly occur in 9 and

Craig’s interpolation theorem is widely reputed to be one of the central 
tools in logic, see, e.g. [17], [2], [7] for sentential, intuitionistic and first-order 
logic, see [6], [9], [8] for abstract logic; for one more aspect of interpolation, 
see the final comments of [10].

In [11] and [12] the present author inaugurated the study of the complexity 
of Craig’s interpolation theorem, i.e. the study of how fast the length ||xll of 
interpolant x grows as a function of the length of 9 and

This, too, turns out to be an interesting aspect of interpolation, having a 
direct relevance for some problems of computation theory, such as (/) relating 
different measures of complexity, e.g., Turing time and network complexity, 
or (m) evaluating the complexity of “ natural ” deduction systems for sen
tential logic.

In addition, the examples of short valid first-order implications 9 ^ given
in [11], whose interpolants are all too long to be practically written down, found 
an application in [13] to the study of the unfeasibility of certain logical opera
tions, in the light of the limitations imposed on computer performance by such 
natural laws as the Heisenberg uncertainty rule.

(*) Nella seduta del 16 gennaio 1981.
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This note is organized as follows: in section 2 we state the results con
cerning the complexity of Craig’s interpolation theorem in first-order logic, 
proved in [11].

In section 3 we deal with sentential logic, in the light of [11] and of [12]. 
In section 4 we finally discuss the above mentioned problems of computation 
theory in the light of the complexity of Craig’s interpolation theorem in 
sentential logic.

For the necessary background in computation theory the reader might 
consult, e.g., [1], [15] or [14].

2. T he length of first-order interpolants

In [11], we proved the following result, to the effect that the length || y 11 
of first-order interpolant y (i-e- the number of occurrences of symbols in y) 
grows faster than any elementary recursive function (see [7]):

2.1 Theorem. Let m =  1 ,2  , • • • ; then we can write down a 
valid first-order implication cp —> <]; with || 9 || , || <[> || <  1100+  15m such that, 
whenever y is any interpolant, then

.2 I

Hxli >  22 1 height 2 m +  1 .

For the proof of this theorem we used a non-rectangular matrix with m rows of 
rapidly growing length, together with an Ehrenfeucht-game argument. Notice 
that already for m =  3 we get a very short implication whose interpolants are 
all impossibly long. In [13] this example found application in a discussion on 
the practical unfeasibility of logical operations.

If one only takes care of sufficiently long implications <p then the 
above result pan be strengthened, to the effect that the asymptotic growth of 
the length of y, although bounded by some Ili-function, grows faster than 
every Sj-function (in the arithmetical hierarchy, see [7]) of ||<p|| +  ||<H|, as 
proved in [11]; as a matter of fact, we have:

2 .2  Theorem. We can give an account of a Wx-function C giving an upper 
bound on the complexity of Craig's interpolation in first-order logic, i.e.

(*) whenever 9 —* ^ is valid, then there is an interpolant y with

llx ll<C(|l9|| + ||<|/||).
On the other hand, no ^-function is able to give an upper bound in the sense of (*).

To obtain the upper bound, we use Craig’s linear deductions in [5] (see 
also [17]); to obtain our lower bound, see [19, Theorem 1].
The above upper bound is due to J. Mycielski (Private Communication). 
The present author had previously found a A2-bound.
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3. T he length of sentential interpolants

The complexity of Craig’s interpolation in sentential logic was first studied 
by the present author in [11] and [12]; in the following section this topic will 
be shown to be related to some of the deepest problems in computation theory. 
An exponential upper bound for the length of interpolants was given in [11], 
as follows:

3.1 Theorem. For any valid implication cp ^ in sentential logic, 
an interpolant x can always be found with

||x || <  _  h  6 .2 (IH! + imi + 6)/8.

As for lower bounds, the following theorem (Theorem 2.5 in [12]) gives the 
first known nontrivial result concerning the (delay) complexity of interpolation; 
see [15] for the necessary background:

3.2 Theorem. For infinitely many de  N  {and starting with some d <  620) 
there is a valid implication cp in sentential logic, with both 9 and ^ having their 
delay complexity smaller than d, such that any interpolant x has a delay complexity 
greater than d +  (1/3) -/og2 {dj2).

3.3 Remark. Intuitively, the above theorem means that the time required 
by the fastest network to compute x (viz. to decide if a sequence of 0’s and Ts 
satisfies x) maY be greater than the time needed to compute 9 or even if x 
may happen to have a much smaller number of variables: this is by no means 
a trivial fact.

4. Applications to computation theory

Problem. Does there exist a polynomial p such that for any valid 
implication 9 -> m sentential logic one can find an interpolant x with
iix ii< i>( ii? ii + imi)?
In other words, does the length of sentential interpolants grow polynomially ? 
Notice that Theorem 3.1 only gives an exponential upper bound. This turns 
to be a difficult problem, which has deep connexions with some important pro
blems of computation theory, namely the PNP problem (or rather, its variant 
for “ natural ” proof systems), and the relationship between Turing time and 
delay complexity (or formula size) of boolean functions. We refer the reader to 
[1], [3], [4], [14], [16], [17], [18] for the necessary background.

The following discussion is intended to show that, whatever the answer 
of the above problem, one will be able to draw from the latter interesting 
consequences in computation theory. For /  : {0 , I}0 0 (0,1} we let f n
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be the restriction of /  to {0 , l}n> where {0 , 1}°° =  {0 , 1} u  {0 , l }2 u  
u  {0 , l }3 u  • • • ; thus f n is the restriction of /  to inputs of length n.

4.1 T heorem. Adopt the above notation; assume the length of interpolants 
grows polynomially : then for any function f  such that there is a Turing machine M 
computing each f n in time polynomial in n, there also exists a sequence of circuits 
Nj , N2 Nn ,•• • with Nn computing f n> and such that

depth (Nn) <  c • log2 n (for some c >  0 , for all n >  1).

In other words, any function /  wich can be computed in time T poly
nomial in the size of the input, also can be computed by circuits of depth 
proportional to log2 T.

Proof. By a Cook-like simulation argument (see [3], [1] or [15]) there exist polyno
mials r , s such that for any n there is a boolean sentence 9 (xx , • • - , xn , xn+1, • • - , xr (n)) 
with |i 91 <  s (n)y such that, for any sequence

b =  b i , • • •, bn , bn-n , * * *, br (w)

of bits (i. e. each bi is either 0 or 1), we have that

b 9

iff b is a binary encoding of the record of a computation by M of input , * • - , bni 
with /  (&!,-• -, bn) =  1.

Here t= is the familiar satisfaction symbol.
Letting now similarly M' compute in polynomial time function f  =  1 —/,  

there are polynomials r', s' such that for any n there is a boolean sentence 
9 ' (xx , • • - , xn , xn+1, • • - , xr,(n)) with 1 9 ' 1 <  s' (n) such that for any sequence of bits

b ~  bi ‘ bn y bn_|_i,• • •, br/(ny

we have that
b' 1=== 9'

iff b' is a binary encoding of the record of a computation by M' of input b± , • • - , bny 
with / '  (&! ,* • -, bn) =  1.

Notice that if bx , • • - , bn , bn+1 , • • - , br(yi) , b^+1 , • • - , 1= 9 A 9', then
/  {bx , • • •, bf) = 1  =  f  (bx , • • •, bf) which is impossible.

Therefore 9 A 9' is inconsistent, so that 9 -> ~| 9? is valid. Let

t  =  1  9 *

Let x be any interpolant for the valid implication 9 -► 4 as given by Craig’s interpola
tion theorem : then 9 x and x 41 are both valid, and the only variables of x are 
{x i , • • •, xn}. If /(& !,•* •, bn) =  1 then bt , • • •, bn can be expanded to a model of 9 , hence 
b\ y * • * > bn i= x (since 9 x) > on- the other hand, if /  (^ , • • •, bn) =  0, then b± , • • •, bn 
can be expanded to a model of 9 ' hence to a model of 4», so that bx , • • - , bn \= ~~] % 
(since ~~] 4 ~1 x)- In definitive we get

bi r - - > b n *=x f(h . »* * *> bn) =  1 •

Notice that j| 9 1| , || 4 II are both bounded by a polynomial in n} hence, by our assumption 
about the growth of interpolants, also ||xll is bounded by some polynomial in n. Now
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notice that the formula size of f n is <  l|xll, hence, by Spira’s result (see [18], [15] or [14]) 
the depth of f n is bounded by some linear function of log2 n ; by our assumption about 
the Turing time T  for / ,  we also have that the depth of f n is bounded by some linear 
function of log2 T. QED.

4.2 Remark. Thus, if the length of interpolants turned out to grow poly- 
nomially, then, e.g., the Transitive Closure (TC) of an n X ft boolean matrix 
(which is well known to be Turing computable in time polynomial in n) would 
be computable by circuits of depth proportional to log2 ft, while every known 
circuit for this problem has depth growing faster than (log2 ft)2. Conversely, 
from a proof that the depth of {any possible circuits for) TC cannot grow propor
tionally to log2 ft, one could infer the superpolynomial complexity of formula 
size for TC, hence, by Theorem 3.1 above, the superpolynomial complexity of 
Craig’s interpolation in sentential logic. This, in turn, may be used to obtain 
information about the (non) existence of “ natural” deduction systems for sen
tential calculus, as follows:

First of all, let us make precise our naturality requirement; intuitively, if 
D is a proof system for sentential logic (see [4]), we can obtain from D another 
proof system D' only dealing with sentences of the form 9 —* such sentences
have the advantage that {i) if the implication is valid, then, by Craig’s interpo
lation theorem, we have an interpolant, while (ii) if the implication is not valid, 
then we can find a counterexample, i.e. a sequence of bits which satisfies 
9 but does not satisfy Thus we are led to require that, in order that 
D' be “ natural” , D' at least is able to process 9 —>* ^ by giving either a 
counterexample or an interpolant, rather than a mere “ yes ” or “ no ”, 
concerning the validity of 9 -> <];.

This motivates the following:

4.3 D efinition . We say that Turing machine M  gives a Craig deduction 
system for sentential logic iff M, when placed on any input of the form 9
will eyentually halt after yielding one of the following two pieces of information : 

(/) either a sequence b of bits such that b 1= 9 and b 1= |
{ii) or an interpolant x f°r the implication 9 ->

Concerning Craig deduction systems we have:

4.4 T heorem. Assume that the size of sentential interpolants grows super- 
polynomially or even, in the light of Theorem 4.1, assume that there is a boolean 
function f  which can be computed in Turing time T polynomial in the length 
of the input, but has no circuit with depth proportional to log2 T. Then there 
does not exist any Craig deduction system for sentential logic, operating in 
polynomial time.

Proof. If the size of interpolants grows superpolynomially, then the conclusion is 
trivial : just apply Definition 4.3. If /  can be computed in polynomial Turing time but has 
no circuits for f n with depth proportional to log2 T  (i. e., proportional to log2 n), then by 
Theorem 4.1 the size of interpolants grows superpolynomially. Now argue as in the first 
part to get the conclusion. QED
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4.5 Remark. Returning to the initial problem of this section, today two 
cases are possible: (1) the size of interpolants grows polynomially, and then each 
function computable in polynomial Turing time T is also computable by circuits 
of depth proportional to log2 T, or (2) interpolants grow superpolynomially, 
and then there is no efficient Craig deduction system for sentential logic. Both 
conclusions are interesting for computation theory.
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