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Analisi matematica. —■ Note on the behaviour o f solutions of 
a second order nonlinear difference equation. Nota H di B l a z e j  

S z m a n d a ,  presentata dal Socio G. Z a p p a .

R iassunto. — Si studia l’equazione non omogenea del secondo ordine alle differenze, 

(*) A (rn Aun) +  an f ( un) =  bn

nel suo comportamento asintotico. Fra l’altro, si danno condizioni sufficienti per il tendere 
allo zero di tutte le soluzioni di (*) non oscillatorie.

i .  In t r o d u c t io n

In  the present paper we consider the second order nonlinear difference 
equation of the form

(1) A (;rn Aun) +  anf ( u n) =  bn , n =  o , 1 , 2 , • • -,

where A is the forward difference operator i.e. Avn =  vn+1 —  vn , {rn} , (an} , 
{<b are the real sequences and the following conditions are assumed to hold:

1) /  : R -> R  — (— 0 0 ,0 0 )  , s f ( s )>  o for s ^  o ,
00

2) r n >  o for n >  n0 >  o , ijrn =  00 .

By a solution of (1) we m ean a real sequence {,un} satisfying equation (1) 
for n =  o , I , 2 ; • • •. W e consider only such solutions which are nontrivial 
for all large n . A  solution of (1) is said to be nonosdilatory if it is eventually 
positive or eventually negative. Otherwise the solution is said to be oscillatory. 
I t is said to be bounded if | un | <  K for ^  — 0 ,1  , 2 , ***,  where K is a 
positive constant.

T he problem  of determ ining sufficient conditions for oscillation of solu
tions of nonlinear second order difference equations has been studied, for 
example, in [5-6] (see also references cited in them ).

T he purpose of this paper is tô derive several criteria for the asym ptotic 
behaviour of solutions of equation (1). T he results we obtain are the discrete 
analogues of some theorem s for nonlinear differential equations of second 
order due to Graef-Spikes [2], B hatia [1], Yeh [7], Kusano-Onose [3]. For 
some results concerning the oscillatory and asym ptotic behaviour of solutions 
of linear difference equations of second order we refer in particu lar to recent 
results of P atu la  [4] and the references in [4].

(*) Pervenuta all’Accademia il i° ottobre 1980.



B lazej Szmanda, Note on the behaviour o f solutions, ecc. 12 1

2. M a in  r e s u l t s  

T h e o r e m  i. Suppose the following conditions are va lid :

(z) an '> öl > o for n > :n0 ,

(it) \ f (s)\  is bounded away from zero i f  | s | Âr bounded away from  zero,

f w~"1 Ì
(m ) sequence | B n =  2  ^ 1 ^  bounded.

\ fc=n0 ;

(un) is a nonosdilatory solution of ( i f  then lim un — o .
n~>oo

Proof. W e write equation ( i)  as the equivalent system 

k u n =  (wn -T B f)lrn ,
(2)

Awn =  —  anf ( u n) .

Let {un} be a nonoscillatory solution of (i) , say {un} is eventually positive. 
T he argum ent if {u^f is eventually  negative is sim ilar and will be omitted. 

F irst it is shown th a t

(4) lim in f un =  o .
n—̂ 00

Suppose not. Then, by 1) and (zï), there exist nx >  n0 and a positive constant 
Cj such th a t f ( u n) >  Q  for n > n x. From  (2) it follows th a t

n n

w n+\ —  wni =  —  2  ak f ( uk) <  — Cj 2  ak -> — o° as n -> co.
k= n i Jc=ni

W e then have
!

&Un =  “b ^ n ) f n  — I f n  i 

for ?z >  zz2> for some n% >  This implies th a t

n—1

Un <  unz —  2  —  00 . as n->-co,
k—U2

contradicting the fact th a t { u ^  is eventually positive. From  the above 
argum ent, we see also th a t we m ust have

00
(4) S  an f ( un) <  OO •

If  lim sup un — y  >  o , then there exists a subsequence {z/^}, such th a t
n—>oo

u%k~> y y as k —> 00. Hence there is k0 (n ^  >  zz0), such th a t unk’> y j 2 for 
^ and, by  (zz), f  (unf) >  C2 for >  k 0 where C2 is a positive constant.
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Finally, we have
np P

f  (j^n) — ß"rik f  — OcCg (f> k§ -j~ i)  >■ OO ,

as p  -> o o , so tha t 2  an f ( un) ~  00 contradicting (4). This completes the 
proof.

A  close look at the proof of Theorem  1 ensures the validity of the following 

Theorem 2. Assume that conditions (ii)-(iii) hold and

OO

(iv) an >  o for n )> n0 , 2  gn =  00 .

Then every solution { u f  of ( 1) is oscillatory or such that lim in f \ un \ =  o.
n—> 00

Note th a t in the homogeneous case we have the discrete analogue of 
B hatia theorem  ([1, Theorem  3]).

Theorem 3. I f  $n ==o and conditions f i ) ,  (iv) hold, then all solutions 
of (1) are oscillatory.

Proof. Assum e the theorem  is false. Then there is a nonoscillatory solu
tion { u f  of (1). Assume th a t un >  o for n >  n0 (the case un <  o can be treated 
similarly). Then, by 1) and (iv), from (1) we obtain A (rn Aun) <  o for n >  n0. 
Now it is easy to see (cfr. for example [5]) tha t Aun o for n > n 0, so th a t 
(unj  is a nondecreasing sequence for n ">nQ. It then  follows from  (it) th a t 
there is a positive constant A  such th a t f  (uf) >  A  for n >  nQ. Thus, by  (iv), 
from (1) we have

w—1
rn ^ u n —  r„0 <  — A 2  ah 00 >

Jc—n0

as h —> 00, which contradicts the fact th a t Aun >  o for n '> n 0.

Remark I .  M ore general oscillation criteria for ( i)  (bn == o) are contained 
in [s].

Theorem 4. Suppose condition (ii) holds and
OO

iv) an >  o fo r  n > n 0 , 2  an == 00 >

{vi) lim ò j a n =  o .
ft—>- 00

Then every nonoscillatory solution {uff of ( i)  satisfies lim in f \u n \ = o .
ft—>-00

Proof. L et { u f  be a nonoscillatory solution of (i), say un >  o for 
n >  nx >  n 0 . F irst observe th a t {un} is also a nonoscillatory solution of

S  (rn à u n) +  [an —  bnl f f u n)] f  {un) =  0 ,  n > n x .
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Suppose th a t lim in f un >  o. Then, by i) and (ii), there exists a positive
n-> oo

constant A  such th a t /  (uf) >  A  for n > n 1. Thus by (vi), there exists nz >  nx 
such th a t bnjanf  (un) < 1 / 2  for n ) > n 2. This implies th a t

an ■* bn/ f( u f)  an [1 - b ja nf ( u n)] ^ 1 / 2  an , n ^  n% .

So from  (v) we get
00

2  K  — K l f  («»)] =  00 •

Hence, by Theorem  3, we would have th a t {un} is oscillatory. A sim ilar 
argum ent holds in the case of an eventually  negative solution.

T h eo rem  5. Assume that condition (v) holds and

(vii) f  (s) is continuous fo r  s =  o ,
n
2  h

(viii) lim in f ----   >  C >  o , fo r  every i >  n0 .
. '^ ° °  £

no solution of (1) approaches zero.

Proof. L et be a solution of (1), which approaches zero. Then, by 
(vii) and 1), there exists nx >  n0 such t h a t / ( ^ n) <  C/4 for ^  >  % . Hence, 
from  (1) we have

rn+1 ^^w+i- '

which, by (viii), yields

n̂+1 1

c
/ ,  af. T- bj . , 

4 héi, k

(5)
E  ahk—rii

rm ^
w —

k=ni

r  E  h

T  +  T T T
k=ni

>
4 2

c
T  ^  0 ’

for all sufficiently large n. I t follows from (v) and (5) th a t rn hsun 00 as n —> 00 
which, in view of 2), leads to the contradictive conclusion th a t u.  ̂ 00 as
n —> 00.

Remark s .  I f  we replace conditions (v) and (viii) by
00

(V) an <  o eventually, 2  an =  — oo ,

(**«') lim sup ( 2  M  / 1 S
n—̂oo \k=i / /  Xk—i

then the assertion of Theorem  5 holds.

A C < o ,  i > n  0 ,
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T h e o r e m  6. Suppose condition (Hi) holds and assume that
oo oo

(ix) ^  o f  =  oo , ^  <3“ exists, where a f  =  m ax (<2n , o) , a~ =  
=  m in (<zn , o) ,

(;r) to every pair o f constants Ct , C2 with  o <  Cx <  Ca corresponds 
a pair of constants M x , M 2 with o <  M i <  | /  (>) | <  M 2 fo r  
every s with  Cx <! |  ̂ | <  C2 .

7% ^  every bounded solution {uw} of ( i)  2V either oscillatory or such that 
lim inf I un I =  o .

n—>oo

Proof. L et {un} be a bounded nonoscillatory solution of (1). Assum e th a t 
{;u is eventually  positive. T he case un <  o is handled similarly. If  
lim in f un >  o , then  according to (x), there are positive constants C± , C2

n—> 0 0

and % >  such th a t Q  <  un <  C2 and M j < / <  M a for n > n x, where 
M.1 , M 2 are also positive constant depending on Cx , C2. Therefore from  (1) 
we obtain

n—1 n—1 n—1
Amä1 =  — L  a t  f ( u k) —  ak /  (uk) +  2

Jc=ni k= n i k= n i

n —1 1 n —1

<  — M, S  — Ma S  ** +  S  b* •
k= ni k—ni k= n i

Hence, by use of (in)  and (ix) we have lim rn Aun =  — oo from which, by
w—>oo

use of 2), we conclude th a t lim un =  — oo.  B ut this contradicts the fact
n—>oo

th a t {un} is eventually  positive. T hus our assertion is true.
W e conclude this paper with the following propositions.

P r o p o s i t io n  i . Assume thati
(xi) f  (s) is locally bounded in R ,

oo

{XU) 2  I an I <  00 . -
OO

(xiiz) 2  bn =  oo .

Then every solution of ( i)  is unbounded.

Proof. Assume to the contrary  th a t there exists a solution {un} of (i)  
which is bounded th a t is | un | <  K, where K is a positive constant. By (xi), 
there exist constants L x , L 2 such th a t ^  <  f  (un) <  h 2. Then from (i), by
(xii) and (xiii), we obtain

n n n

^n+1 1 r̂iQ ^k L 2 &k Lj_ ^  j a & > OO ,
k=n0 k=nQ k=nQ

as n —> 00 i.e. un -*  oo , a contradiction. Thus the proof is complete.
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Remark 3. I t is clear th a t Proposition 1 holds if we replace condition
00

(xiii) by 2  A i =  —  00 •

Proposition 2. Suppose the following conditions hold'.

(xiv) an >  o fo r  n > n ^ ,

(xv) f  (s) is bounded from  above when s is bounded from  above,
00

(xvi) 2  (bn —  M an) =  00 for any M >  o .

Then all solutions of (1) are unbounded above.

Proof. L et {;un} be a solution of (1) such th a t un <  K x. Then, by (xv), 
there is a positive constant M such th a t f  (uf) <  M. Therefore we obtain

n —1
rno ^ u no ^  21  ̂ 00 ,

A;=n0

as ^ 00, th a t is —> 00. But this is a contradiction. A  sim ilar argum ent
leads to the following

Proposition 3. Let condition (xiv) holds and assume that

(xv)  f  (s) is bounded from  below when s is bounded from below,
00

(x v i ') 21 (Pn +  =  — 00 for any M >  o.

Then all solutions of (1) are unbounded below.
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