Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Blazej Szmanda

Note on the behaviour of solutions of a second order nonlinear difference equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.3-4, p. 120-125.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_3-4_120_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi matematica. - Note on the behaviour of solutions of a second order nonlinear difference equation. Nota (*) di BeażEJ Szmanda, presentata dal Socio G. Zappa.

Riassunto. -- Si studia l'equazione non omogenea del secondo ordine alle differenze,

$$
\begin{equation*}
\Delta\left(r_{n} \Delta u_{n}\right)+a_{n} f\left(u_{n}\right)=b_{n} \tag{*}
\end{equation*}
$$

nel suo comportamento asintotico. Fra l'altro, si danno condizioni sufficienti per il tendere allo zero di tutte le soluzioni di (*) non oscillatorie.

I. INTRODUCTION

In the present paper we consider the second order nonlinear difference equation of the form

$$
\begin{equation*}
\Delta\left(r_{n} \Delta u_{n}\right)+a_{n} f\left(u_{n}\right)=b_{n}, \quad n=0, \mathbf{1}, 2, \cdots \tag{I}
\end{equation*}
$$

where Δ is the forward difference operator i.e. $\Delta v_{n}=v_{n+1}-v_{n},\left\{r_{n}\right\},\left(a_{n}\right\}$, $\left\{b_{n}\right\}$ are the real sequences and the following conditions are assumed to hold:

$$
\begin{aligned}
& \text { 1) } f: \mathrm{R} \rightarrow \mathrm{R}=(-\infty, \infty) \quad, \quad s f(s)>0 \quad \text { for } s \neq 0 \\
& \text { 2) } \quad r_{n}>0 \quad \text { for } \quad n \geq n_{0} \geq 0, \quad \sum_{\mathrm{I} / r_{n}=\infty}^{\infty} .
\end{aligned}
$$

By a solution of (I) we mean a real sequence $\left\{u_{n}\right\}$ satisfying equation (I) for $n=0,1,2 ; \cdots$. We consider only such solutions which are nontrivial for all large n. A solution of (I) is said to be nonoscillatory if it is eventually positive or eventually negative. Otherwise the solution is said to be ascillatory. It is said to be bounded if $\left|u_{n}\right| \leq K$ for $n=0, \mathbf{I}, 2, \cdots$, where K is a positive constant.

The problem of determining sufficient conditions for oscillation of solutions of nonlinear second order difference equations has been studied, for example, in $[5-6]$ (see also references cited in them).

The purpose of this paper is to derive several criteria for the asymptotic behaviour of solutions of equation (1). The results we obtain are the discrete analogues of some theorems for nonlinear differential equations of second order due to Graef-Spikes [2], Bhatia [r], Yeh [7], Kusano-Onose [3]. For some results concerning the oscillatory and asymptotic behaviour of solutions of linear difference equations of second order we refer in particular to recent results of Patula [4] and the references in [4].
(*) Pervenuta all'Accademia il \mathbf{I}^{0} ottobre 1980.

2. Main Results

THEOREM I. Suppose the following conditions are valid:
(i) $a_{n} \geq \alpha>0$ for $n \geq n_{0}$,
(ii) $|f(s)|$ is bounded away from zero if $|s|$ is bounded away from zero, (iii) the sequence $\left\{\mathrm{B}_{n}=\sum_{k=n_{0}}^{n-1} b_{k}\right\}$ is bounded.

If $\left\{u_{n}\right\}$ is a nonoscillatory solution of ($\mathbf{1}$), then $\lim _{n \rightarrow \infty} u_{n}=0$.
Proof. We write equation (I) as the equivalent system
(2)

$$
\begin{aligned}
\Delta u_{n} & =\left(w_{n}+\mathrm{B}_{n}\right) / r_{n}, \\
\Delta w_{n} & =-a_{n} f\left(u_{n}\right) .
\end{aligned}
$$

Let $\left\{u_{n}\right\}$ be a nonoscillatory solution of (I), say $\left\{u_{n}\right\}$ is eventually positive. The argument if $\left\{u_{n}\right\}$ is eventually negative is similar and will be omitted.

First it is shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf u_{n}=0 \tag{4}
\end{equation*}
$$

Suppose not. Then, by I) and (ii), there exist $n_{1} \geq n_{0}$ and a positive constant C_{1} such that $f\left(u_{n}\right) \geq C_{1}$ for $n \geq n_{1}$. From (2) it follows that

$$
w_{n+1}-w_{n_{1}}=-\sum_{k=n_{1}}^{n} a_{k} f\left(u_{k}\right) \leq-\mathrm{C}_{\mathbf{1}} \sum_{k=n_{1}}^{n} a_{k} \rightarrow-\infty \quad \text { as } \quad n \rightarrow \infty
$$

We then have

$$
\Delta u_{n}=\left(w_{n}+\mathrm{B}_{n}\right) / r_{n} \leq-\mathrm{r} / r_{n},
$$

for $n \geq n_{2}$, for some $n_{2} \geq n_{1}$. This implies that

$$
u_{n} \leq u_{n_{2}}-\sum_{k=n_{2}}^{n-1} \mathrm{I} / r_{k} \rightarrow-\infty, \quad \text { as } \quad n \rightarrow \infty
$$

contradicting the fact that $\left\{u_{n}\right\}$ is eventually positive. From the above argument, we see also that we must have

$$
\begin{equation*}
\sum^{\infty} a_{n} f\left(u_{n}\right)<\infty \tag{4}
\end{equation*}
$$

If $\limsup _{n \rightarrow \infty} u_{n}=\gamma>0$, then there exists a subsequence $\left\{u_{n_{k}}\right\}$, such that $u_{n_{k}} \rightarrow \gamma$, as $k \rightarrow \infty$. Hence there is $k_{0}\left(n_{k_{0}} \geq n_{0}\right)$, such that $u_{n_{k}} \geq \gamma / 2$ for $k \geq k_{0}$ and, by (ii), $f\left(u_{n_{k}}\right) \geq \mathrm{C}_{2}$ for $k \geq k_{0}$ where C_{2} is a positive constant.

Finally, we have

$$
\sum^{n_{p}} a_{n} f\left(u_{n}\right) \geq \sum_{k=k_{0}}^{p} a_{n_{k}} f\left(u_{n_{k}}\right) \geq \alpha \mathrm{C}_{2}\left(p-k_{0}+\mathrm{I}\right) \rightarrow \infty
$$

as $p \rightarrow \infty$, so that $\sum^{\infty} a_{n} f\left(u_{n}\right)=\infty$ contradicting (4). This completes the proof.

A close look at the proof of Theorem I ensures the validity of the following
Theorem 2. Assume that conditions (ii)-(iii) hold and

$$
\text { (iv) } a_{n} \geq 0 \quad \text { for } n \geq n_{0}, \quad \sum a_{n}=\infty
$$

Then every solution $\left\{u_{n}\right\}$ of (I) is oscillatory or such that $\liminf _{n \rightarrow \infty}\left|u_{n}\right|=0$.
Note that in the homogeneous case we have the discrete analogue of Bhatia theorem ([I, Theorem 3]).

Theorem 3. If $b_{n} \equiv \mathrm{o}$ and conditions (ii), (iv) hold, then all solutions of (I) are oscillatory.

Proof. Assume the theorem is false. Then there is a nonosciilatory solution $\left\{u_{n}\right\}$ of (1). Assume that $u_{n}>0$ for $n \geq n_{0}$ (the case $u_{n}<0$ can be treated similarly). Then, by I) and (iv), from (I) we obtain $\Delta\left(r_{n} \Delta u_{n}\right) \leq 0$ for $n \geq n_{0}$. Now it is easy to see (cfr. for example [5]) that $\Delta u_{n} \geq 0$ for $n \geq n_{0}$, so that $\left\{u_{n}\right\}$ is a nondecreasing sequence for $n \geq n_{0}$. It then follows from (ii) that there is a positive constant A such that $f\left(u_{n}\right) \geq \mathrm{A}$ for $n \geq n_{0}$. Thus, by (iv), from (I) we have

$$
r_{n} \Delta u_{n}-r_{n_{0}} \Delta u_{n_{0}} \leq-\mathrm{A} \sum_{k=n_{0}}^{n-1} a_{k} \rightarrow-\infty
$$

as $n \rightarrow \infty$, which contradicts the fact that $\Delta u_{n} \geq 0$ for $n \geq n_{0}$.
Remark I. More general oscillation criteria for (I) ($b_{n} \equiv \mathrm{o}$) are contained in [5].

Theorem 4. Suppose condition (ii) holds and

$$
\begin{aligned}
& \text { (v) } a_{n}>0 \quad \text { for } n \geq n_{0}, \quad \sum^{\infty} a_{n}=\infty \\
& \text { (vi) } \lim _{n \rightarrow \infty} b_{n} / a_{n}=0
\end{aligned}
$$

Then every nonoscillatory solution $\left\{u_{n}\right\}$ of (1) satisfies $\lim _{n \rightarrow \infty} \inf \left|u_{n}\right|=0$.
Proof. Let $\left\{u_{n}\right\}$ be a nonoscillatory solution of (I), say $u_{n}>0$ for $n \geq n_{1} \geq n_{0}$. First observe that $\left\{u_{n}\right\}$ is also a nonoscillatory solution of

$$
\Delta\left(r_{n} \Delta u_{n}\right)+\left[a_{n}-b_{n} \mid f\left(u_{n}\right)\right] f\left(u_{n}\right)=0, \quad n \geq n_{1} .
$$

Suppose that $\underset{n \rightarrow \infty}{\lim \inf } u_{n}>0$. Then, by I) and (ii), there exists a positive constant A such that $f\left(u_{n}\right) \geq \mathrm{A}$ for $n \geq n_{1}$. Thus by (vi), there exists $n_{2} \geq n_{1}$ such that $b_{n} / a_{n} f\left(u_{n}\right)<\mathrm{I} / 2$ for $n \geq n_{2}$. This implies that

$$
a_{n}-b_{n} \mid f\left(u_{n}\right)=a_{n}\left[\mathrm{r}-b_{n} / a_{n} f\left(u_{n}\right)\right] \geq \mathrm{I} / 2 a_{n}, \quad n \geq n_{2}
$$

So from (v) we get

$$
\sum^{\infty}\left[a_{n}-b_{n} \mid f\left(u_{n}\right)\right]=\infty
$$

Hence, by Theorem 3, we would have that $\left\{u_{n}\right\}$ is oscillatory. A similar argument holds in the case of an eventually negative solution.

Theorem 5. Assume that condition (v) holds and

$$
\begin{aligned}
& \text { (vii) } f(s) \text { is continuous for } s=0 \\
& \text { (viii) } \liminf _{n \rightarrow \infty} \frac{\sum_{k=i}^{n} b_{k}}{\sum_{k=i}^{n} a_{k}} \geq \mathrm{C}>0, \text { for every } i \geq n_{0}
\end{aligned}
$$

Then no solution of (I) approaches zero.
Proof. Let $\left\{u_{n}\right\}$ be a solution of (I), which approaches zero. Then, by (vii) and I), there exists $n_{1} \geq n_{0}$ such that $f\left(u_{n}\right)<\mathrm{C} / 4$ for $n \geq n_{1}$. Hence, from (I) we have

$$
r_{n+1} \Delta u_{n+1}-r_{n_{1}} \Delta u_{n_{1}} \geq-\frac{\mathrm{C}}{4} \sum_{k=n_{1}}^{n} a_{k}+\sum_{k=n_{1}}^{n} b_{k}
$$

which, by (viii), yields

$$
\begin{equation*}
\frac{r_{n+1} \Delta u_{n+1}}{\sum_{k=n_{1}}^{n} a_{k}}-\frac{r_{n_{1}} \Delta u_{n_{1}}}{\sum_{k=n_{1}}^{n} a_{k}} \geq-\frac{\mathrm{C}}{4}+\frac{\sum_{k=n_{1}}^{n} b_{k}}{\sum_{k=n_{1}}^{n} a_{k}} \geq-\frac{\mathrm{C}}{4}+\frac{\mathrm{C}}{2}=\frac{\mathrm{C}}{4}>0 \tag{5}
\end{equation*}
$$

for all sufficiently large n. It follows from (v) and (5) that $r_{n} \Delta u_{n} \rightarrow \infty$ as $n \rightarrow \infty$ which, in view of 2), leads to the contradictive conclusion that $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Remark 2. If we replace conditions (v) and (viii) by

$$
\begin{aligned}
& \text { (v') } a_{n}<0 \text { eventually, } \sum^{\infty} a_{n}=-\infty, \\
& \text { (viii') } \quad \underset{n \rightarrow \infty}{\lim \sup }\left(\sum_{k=i}^{n} b_{k}\right) /\left(\sum_{k=i}^{n} a_{k}\right) \leq \mathrm{C}<0, \quad i \geq n_{0},
\end{aligned}
$$

then the assertion of Theorem 5 holds.

Theorem 6. Suppose condition (iii) holds and assume that
(ix) $\quad \sum^{\infty} a_{n}^{+}=\infty, \sum^{\infty} a_{n}^{-}$exists, where $a_{n}^{+}=\max \left(a_{n}, 0\right), a_{n}^{-}=$ $=\min \left(a_{n}, o\right)$,
(x) to every pair of constants $\mathrm{C}_{1}, \mathrm{C}_{2}$ with $\mathrm{O}<\mathrm{C}_{1}<\mathrm{C}_{2}$ there corresponds a pair of constants $\mathrm{M}_{1}, \mathrm{M}_{2}$ with $0<\mathrm{M}_{1} \leq|f(s)| \leq \mathrm{M}_{2}$ for every s with $\mathrm{C}_{1} \leq|s| \leq \mathrm{C}_{2}$.

Then every bounded solution $\left\{u_{n}\right\}$ of (1) is either oscillatory or such that $\lim \inf \left|u_{n}\right|=0$.
$n \rightarrow \infty$
Proof. Let $\left\{u_{n}\right\}$ be a bounded nonoscillatory solution of (1). Assume that $\left\{u_{n}\right\}$ is eventually positive. The case $u_{n}<0$ is handled similarly. If $\lim \inf u_{n}>0$, then according to (x), there are positive constants C_{1}, C_{2} $n \rightarrow \infty$
and $n_{1} \geq n_{0}$ such that $\mathrm{C}_{1} \leq u_{n} \leq \mathrm{C}_{2}$ and $\mathrm{M}_{1} \leq f\left(u_{n}\right) \leq \mathrm{M}_{2}$ for $n \geq n_{1}$, where $\mathrm{M}_{1}, \mathrm{M}_{2}$ are also positive constant depending on $\mathrm{C}_{1}, \mathrm{C}_{2}$. Therefore from (i) we obtain

$$
\begin{aligned}
r_{n} \Delta u_{n}-r_{n_{1}} \Delta u_{n_{1}} & =-\sum_{k=n_{1}}^{n-1} a_{k}^{+} f\left(u_{k}\right)-\sum_{k=n_{1}}^{n-1} a_{k}^{-} f\left(u_{k}\right)+\sum_{k=n_{1}}^{n-1} b_{k} \leq \\
& \leq-\mathrm{M}_{1} \sum_{k=n_{1}}^{n-1} a_{k}^{+}-\mathrm{M}_{2} \sum_{k=n_{1}}^{n-1} a_{k}^{-}+\sum_{k=n_{1}}^{n-1} b_{k} .
\end{aligned}
$$

Hence, by use of (iii) and (ix) we have $\lim _{n \rightarrow \infty} r_{n} \Delta u_{n}=-\infty$ from which, by use of 2), we conclude that $\lim _{n \rightarrow \infty} u_{n}=-\infty$. But this contradicts the fact that $\left\{u_{n}\right\}$ is eventually positive. Thus our assertion is true.

We conclude this paper with the following propositions.
Proposttion i. Assume that

$$
\begin{aligned}
& \text { (xi) } f(s) \text { is locally bounded in } \mathrm{R} \text {, } \\
& \text { (xii) } \sum^{\infty}\left|a_{n}\right|<\infty, \\
& \text { (xiii) } \sum^{\infty} b_{n}=\infty .
\end{aligned}
$$

Then every solution of (1) is unbounded.
Proof. Assume to the contrary that there exists a solution $\left\{u_{n}\right\}$ of (I) which is bounded that is $\left|u_{n}\right| \leq \mathrm{K}$, where K is a positive constant. By ($x i$), there exist constants $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \leq f\left(u_{n}\right) \leq \mathrm{L}_{2}$. Then from (1), by (xii) and (xiii), we obtain

$$
r_{n+1} \Delta u_{n+1}-r_{n_{0}} \Delta u_{n_{0}} \geq \sum_{k=n_{0}}^{n} b_{k}-\mathrm{L}_{2} \sum_{k=n_{0}}^{n} a_{k}^{+}-\mathrm{L}_{\mathbf{1}} \sum_{k=n_{0}}^{n} a_{k}^{-} \rightarrow \infty,
$$

as $n \rightarrow \infty$ i.e. $u_{n} \rightarrow \infty$, a contradiction. Thus the proof is complete.

Remark 3. It is clear that Proposition I holds if we replace condition (xiii) by $\sum^{\infty} b_{n}=-\infty$.

Proposition 2. Suppose the following conditions hold:

$$
\begin{aligned}
& \text { (xiv) } a_{n} \geq 0 \text { for } n \geq n_{\mathbf{0}} \text {, } \\
& \text { (xv) } f(s) \text { is bounded from above rehen } s \text { is bounded from above, } \\
& \text { (xvi) } \sum^{\infty}\left(b_{n}-\mathrm{M} a_{n}\right)=\infty \text { for any } \mathrm{M}>0 \text {. }
\end{aligned}
$$

Then all solutions of (1) are unbounded above.
Proof. Let $\left\{u_{n}\right\}$ be a solution of (I) such that $u_{n} \leq \mathrm{K}_{1}$. Then, by ($x v$), there is a positive constant M such that $f\left(u_{n}\right) \leq \mathrm{M}$. Therefore we obtain

$$
r_{n} \Delta u_{n}-r_{n_{0}} \Delta u_{n_{0}} \geq \sum_{k=n_{0}}^{n-1}\left(b_{k}-\mathrm{M} \alpha_{k}\right) \rightarrow \infty,
$$

as $n \rightarrow \infty$, that is $u_{n} \rightarrow \infty$. But this is a contradiction. A similar argument leads to the following

Proposition 3. Let condition (xiv) holds and assume that

$$
\begin{aligned}
& \left(x v^{\prime}\right) f(s) \text { is bounded from beloze when } s \text { is bounded from below, } \\
& \left(x v i^{\prime}\right) \quad \sum^{\infty}\left(b_{n}+\mathrm{M} a_{n}\right)=-\infty \quad \text { for any } \mathrm{M}>0 .
\end{aligned}
$$

Then all solutions of (1) are unbounded below.

References

[1] N. P. Bhatia (1966) - Some oscillation theorems for second order differential equations, «J. Math. Anal. Appl. 》, $15,442-446$.
[2] J. R. Graef and P. W. Spikes (1975) - Asymptotic behaviour of solutions of a second order nonlinear differential equation, "J. Diff. Equat. ", 17,461 -476.
[3] T. Kusano and H. Onose (1974) - An oscillation theorem for differential equations with deviating argument, "Proc. Japan Acad.», 50, 809-811.
[4] W. T. Patula (1979) - Growth, oscillation and comparison theorems for second order linear difference equations, «SIAM J. Math. Anal.》, Io, 1272-1279.
[5] B. Szmanda - Oscillation criteria for second order non-linear difference equations, «Ann. Polon. Math.», (to appear).
[6] B. SzMANDA - Oscillation theorems for nonlinear second order difference equations, "J. Math. Anal. Appl." (to appear).
[7] C.C. Yeh (1977) - Further results on asymptotic behaviour of solutions of functional differential equations, "Atti Accad. Naz. Lincei, Rend.", 63, $15-18$.

