Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Neyamat Zaheer

Algebra-Valued Composite Abstract Homogeneous Polynomials

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.3-4, p. 111-116.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_3-4_111_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - Algebra-Valued Composite Abstract Homogeneous Polynomials. Nota $\left.{ }^{(}\right)$di Neyamat $Z_{\text {aheer, }}$ presentata dal Socio G. Zappa.

Abstract

Riassunto. - Si denoti con E (rispettivamente V) uno spazio vettoriale (risp. una algebra con identità) sopra una campo K , di caratteristica O algebricamente chiuso. Oggetto di questa nota è impiegare i coni circolari nello studio di certi polinomi omogenei astratti composti a valori nell'algebra (a.h.p.) da E in V e ottenere una formulazione più generale del nostro proprio risultato (si veda il Teorema (2.1) in "Trans. Amer. Math. Soc.», 228 (1977), pp. 345-358) ottenuto prima per gli a.h.p. composti da E in K. Tali studi per i polinomi ordinari furono compiuti in passato da Szegö, Cohn, Egerváry, De Bruijn e Zervos, e il teorema di Szegö è stato generalizzato agli a.h.p. da Marden e dall'Autore (cfr. la nota citata sopra). Comunque, tutti questi teoremi «di tipo Szegö», diventano corollari naturali delle nostre attuali formulazioni.

I. Introduction

Let E and V be vector spaces over the same field K of characteristic zero. A mapping $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{V}$ is called [6 pp. 55, 59], [5, pp. 760-763], [13, pp. 52-61] , [r 7], a vector-valued abstract homogeneous polynomial (more briefly, vectorvalued a.h.p.) of degree n if for every $x, y \in \mathrm{E}$,

$$
\mathrm{P}(s x+t y)=\sum_{k=0}^{n} \mathrm{~A}_{k}(x, y) s^{k} t^{n-k} \quad \forall s, t \in \mathrm{~K},
$$

where the coefficients $\mathrm{A}_{k}(x, y) \in \mathrm{V}$ and are independent of s and t for any given x, y in E . For distinction of cases, the adjective 'vector-valued' in the above definition will be replaced by 'algebra-valued ' or it will be completely dropped according as V is, in particular, an algebra or the field K . We denote by \mathbf{P}_{n}^{*} the class of all vector-valued a.h.p.'s of degree n from E to V (even if V is an algebra) and, by \mathbf{P}_{n}, the class of all a.h.p's of degree n from E to K . The n th-polar of P is the mapping (see [6, pp. 55, 59] or [5, pp. 762763] for its existence and uniqueness) $\mathrm{P}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ from E^{n} to V which is a symmetric n-linear form such that $\mathrm{P}(x, x, \cdots, x)=\mathrm{P}(x)$ for every $x \in \mathrm{E}$. The k th-polar of P is then defined by

$$
\mathrm{P}\left(x_{1}, \cdots, x_{k}, x\right)=\mathrm{P}\left(x_{1}, \cdots, x_{k}, x, x, \cdots, x\right)
$$

(*) Pervenuta all'Accademia il 1^{0} ottobre 1980.

From now on we shall assume throughout that K is an algebraically closed field of characteristic zero and that V is an algebra over K with identity (cf. [5, pp. 19-20] or [12, p. 251]). We know ([1, pp. 38-40], [6, pp. 56-57], [II, pp. 248-255]) that such a field K has a maximal ordered subfield K_{0} such that $\mathrm{K}=\mathrm{K}_{0}(i)=\left\{a+i b: a, b \in \mathrm{~K}_{0}\right\}$, where $-i^{2}=\mathrm{I}$. Let K denote the usual extension of K by adjoining to it an element ω having the properties of infinity (see [14]) and let $\mathrm{D}\left(\mathrm{K}_{\omega}\right)$ denote the class of all generalized circular regions of K_{ω} as introduced by Zervos [19, pp. 353, 373] (see also [15, p. 346]). The definition and other details concerning these regions can be found in [14], [15], or [16] and are not explicitly needed for purposes of the present study.

The following discussion on circular cones and hermitian cones can be seen in [14]. Given a nucleus N of E^{2} and a cicular mapping $G: N \rightarrow D\left(K_{\omega}\right)$, we define the circular cone, relative to N and G , by

$$
\mathrm{E}_{0}(\mathrm{~N}, \mathrm{G})=\cup \mathrm{T}_{\mathrm{G}}(x, y),
$$

where

$$
\begin{equation*}
\mathrm{T}_{\mathrm{G}}(x, y)=\{s x+t y \neq 0: s, t \in \mathrm{~K} ; s / t \in \mathrm{G}(x, y)\} \tag{I.I}
\end{equation*}
$$

and where the union ranges over all elements $(x, y) \in \mathrm{N}$. The work in papers [14]-[18] uses circular cones in the theory of a.h.p.'s and successfully replaces the role of hermitian cones in the earlier works due to Marden [9] and Hörmander [6]. The relationships between such cones is exhibited in the following propositions due to the author [14, pp. 117-119].

Proposition i.i. Let E_{1} be a hermitian cone in E . Given a nuicleus N of E^{2}, there exists a circular mapping $\mathrm{G}: \mathrm{N} \rightarrow \mathrm{D}\left(\mathrm{K}_{\omega}\right)$ such that $\mathrm{E}_{0}(\mathrm{~N}, \mathrm{G})=\mathrm{E}_{1}$ and $\mathrm{E}_{1} \cap \mathscr{L}[x, y]=\mathrm{T}_{\mathrm{G}}(x, y)$ for every $(x, y) \in \mathrm{N}$, where T_{G} is as defined by (I.I) and $\mathscr{L}[x, y]$ is the subspace generated by x and y.

Proposition i.2. The class of all circular cones in E contains properly the class of all hermitian cones in E .

A mapping $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{K}$ (V being an algebra with identity over K) is called [12, p. 253] (see also [17] or [18]) a scalar homomorphism on V if it satisfies the following two conditions:
(i) $\mathrm{L}(\alpha u+\beta v)=\alpha \mathrm{L}(u)+\beta \mathrm{L}(v) \quad \forall u, v \in \mathrm{~V}, \quad \alpha, \beta \in \mathrm{~K}$;
(ii) $\mathrm{L}(u v)=\mathrm{L}(u) \mathrm{L}(v) \quad \forall u, v \in \mathrm{~V}$.

Ideal maximal subspaces [12, p. 252] of V are characterized (cf. [12, Theorem 2, p. 254]). in a one-to-one manner, by sets of the form

$$
\begin{equation*}
\{v \in \mathrm{~V}: \mathrm{L}(v)=0\}=\mathrm{L}^{1}(\text { say }), \tag{1.2}
\end{equation*}
$$

where L is a nontrivial scalar homomorphism on V (see also [17] or [18]).

2. SZEGÖ-TYPE THEOREMS

In order to discuss the concrete mathematical problem and to formulate a concise theorem, we need the following concepts. Let $\mathrm{P}, \mathrm{Q} \in \mathbf{P}_{n}^{*}$ and be given by

$$
\begin{align*}
& \mathrm{P}(s \xi+t \eta)=\sum_{k=0}^{n} \mathrm{C}(n, k) \mathrm{A}_{k}(\xi, \eta) s^{k} t^{n-k} \tag{2.1}\\
& \mathrm{Q}(s \xi+t \eta)=\sum_{k=0}^{n} \mathrm{C}(n, k) \mathrm{B}_{k}(\xi, \eta) s^{k} t^{n-k}
\end{align*}
$$

where $\mathrm{C}(n, k)=n!/(n-k)!$. We define a unique algebra-valued a.h.p. $\mathrm{R} \equiv \mathrm{P} \wedge \mathrm{Q} \in \mathbf{P}_{2 n}^{*} \quad$ by

$$
\begin{equation*}
\mathrm{R}(s \xi+t \eta)=(\mathrm{P} \wedge Q)(s \xi+t \eta)=\sum_{k=0}^{n} \mathrm{C}(n, k) \mathrm{A}_{k}(\xi, \eta) \mathrm{B}_{k}(\xi, \eta) s^{2 k} t^{2(n-k)} \tag{2.3}
\end{equation*}
$$

for every $s, t \in \mathrm{~K}$ and call $\mathrm{P} \wedge \mathrm{Q}$ as an algebra-valued \wedge-composite a.h.p. obtained from P and Q . This concept is an immediate extension of the corresponding known idea (see [15, p. 348]) in respect to the class \mathbf{P}_{n}, in which case it will be termed simply as a \wedge-composite a.h.p. (from E to K). If $\mathrm{L}(\neq 0)$ is a scalar homomorphism on V , we define the mapping LP:E $\rightarrow \mathrm{K}$ by $(\mathrm{LP})(x)=\mathrm{L}(\mathrm{P}(x))$ for $x \in \mathrm{E}$. If $\mathrm{P}, \mathrm{Q} \in \mathbf{P}_{n}^{*}$, it is trivial to see that $\mathrm{LP}, \mathrm{LQ} \in \mathbf{P}_{n}$ and that $\mathrm{L}(\mathrm{P} \wedge \mathrm{Q})=\mathrm{LP} \wedge \mathrm{LQ}$ (cf. (2.1)-(2.3)).

The concept of supportable subsets of a vector space is well-known [6, p. 59]. The analogous concept in an algebra is given in the following.

Definition 2.I. ([I7], [18]). A subset M of V is called fully supportable if every point ξ, outside M is contained in some ideal maximal subspace of V which does not intersect M. In other words (cf. (I.2)), for every $\xi \in V-M$, there exists a nontrivial scalar homomorphism L on V such that $L(\xi)=0$ but $\mathrm{L}(v) \neq 0$ for every $v \in \mathrm{M}$.

Obviously, a fully supportable subset of V is also a supportable subset of V when V is regarded as a vector space, but not conversely. The following proposition gives a general method for constructing a fully supportable subset of an arbitrary algebra V .

Proposition 2.2 ([17], [18]). The complement in V of every ideal maximal subspace of V is a fully supportable subset of V .

If $\mathrm{P} \in \mathbf{P}_{n}^{*}$ and M is a fully supportable subset of V , we shall write (for given $x, y \in \mathrm{E}$)

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}(x, y)=\{s x+t y \neq 0: \quad s, t \in \mathrm{~K} \quad ; \quad \mathrm{P}(s x+t y) \notin \mathrm{M}\} . \tag{2.4}
\end{equation*}
$$

8 - RENDICONTI 1980, vol. LXIX, fasc. 3-4.

If $\mathrm{V}=\mathrm{K}$, the only nontrivial scalar homomorphism on V is the identity map from K to K. In this case, Proposition 2.2 implies that $\mathrm{K}-\{0\}$ is the only fully supportable subset of K and that the corresponding set $\mathrm{E}_{\mathrm{P}}(x, y)$ reduces essentially to the nullset [14] $\mathrm{Z}_{\mathrm{P}}(x, y)$ of P given by

$$
\mathrm{Z}_{\mathrm{P}}(x, y)=\{s x+t y \neq 0: \quad s, t \in \mathrm{~K} \quad ; \quad \mathrm{P}(s x+t y)=0\} .
$$

In this section, we shall employ the concepts of circular cones and fully supportable sets in the study of algebra-valued \wedge-composite a.h.p.'s from E to V and obtain a more general formulation (to such polynomials) of the following result due to the author [15 , Theorem (2.1)], established earlier for \wedge-composite a.h.p.'s from E to K.

Theorem 2.3. Let $\mathrm{E}_{0}(\mathrm{~N}, \mathrm{G})$ be a circular cone in E and let $\mathrm{P}, \mathrm{Q} \in \mathbf{P}_{n}$ such that $\mathrm{Z}_{\mathrm{P}}(x, y) \subseteq \mathrm{T}_{\mathrm{G}}(x, y)$ for some $(x, y) \in \mathrm{N}$. If $\mu x+\nu y \in \mathrm{Z}_{\mathrm{P} \wedge \mathrm{Q}}(x, y)$, then there exist elements $\alpha x+\beta y \in \mathrm{~T}_{\mathrm{G}}(x, y)$ and $\gamma x+\delta y \in \mathrm{Z}_{\mathrm{Q}}(x, y)$ such that $\sigma^{2}=-\rho \Delta$, where $\sigma=\mu / \nu, \rho=\gamma / \delta$ and $\Delta=\alpha / \beta$ (when σ^{2} is of the form $0 \cdot \omega($ resp. $\omega \cdot 0)$, the equation $\sigma^{2}=-\rho \Delta$ is to be interpreted as $-\sigma^{2} / \rho=\Delta=\omega$ (resp. $-\sigma^{2} / \Delta=\rho=0$) or as $-\sigma^{2} / \Delta=\rho=0\left(\right.$ resp. $-\sigma^{2} / \rho=\Delta=0$) according as $\sigma \neq 0$ or $\sigma=0$).

It was shown $[15, \S 2]$ that the above theorem generalizes Szegö's theorem (see [10, § 2, Theorem 2] or [7, Theorem (i6.1)]) to a.h.p.'s, that it includes the earlier generalizations due to Zervos [19, p. 363] and to Marden [9, Theorem (3.2)], and that it also includes some related results (in the complex plane) due to Cohn [3], de Bruijn [2], and Egerváry [4]. We now give our main theorem of this paper.

Theorem 2.4. Let $\mathrm{E}_{0}(\mathrm{~N}, \mathrm{G})$ be a circular cone in E, M a fully supportable subset of V , and let $\mathrm{P}, \mathrm{Q} \in \mathbf{P}_{n}^{*}$ such that $\mathrm{E}_{\mathrm{P}}(x, y) \subseteq \mathrm{T}_{\mathrm{G}}(x, y)$ for some $(x, y) \in \mathrm{N}$. If $\mu x+v y \in \mathrm{E}_{\mathrm{P} \wedge \mathrm{Q}}(x, y)$, then there exist elements $\alpha x+\beta y \in \mathrm{~T}_{\mathrm{G}}(x, y)$ and $\gamma x+\delta y \in \mathrm{E}_{\mathrm{Q}}(x, y)$ such that $\sigma^{2}=-\rho \Delta$, where $\sigma=\mu / \nu, \rho=\gamma / \delta$, and $\Delta=\alpha / \beta$.

Remark. Same interpretations are to be made as in Theorem 2.3 for cases when σ^{2} is of the form $0 \cdot \omega$ or $\omega \cdot 0$.

Proof. Suppose that $\mu x+v y \in \mathrm{E}_{\mathrm{R}}(x, y)$, where $\mathrm{R}=\mathrm{P} \wedge \mathrm{Q}$. Then (cf. (2.4)) $\mathrm{R}(\mu x+\nu y) \notin \mathrm{M}$. By definition of fully supportable subsets, there exists a nontrivial scalar homomorphism on V such that $\mathrm{L}(\mathrm{R}(\mu x+v y))=$ $=(\mathrm{LR})(\mu x+v y)=0$ but $\mathrm{L}(v) \neq 0$ for every $v \in \mathrm{M}$. Consequently, $\mu x+$ $+v y \in \mathrm{Z}_{\mathrm{LR}}(x, y)$. But we have seen that $\mathrm{LP}, \mathrm{LQ} \in \mathbf{P}_{n}$ and $\mathrm{LR}=\mathrm{LP} \wedge \mathrm{LQ}$. Next, we claim that $Z_{\mathrm{LP}}(x, y) \subseteq \mathrm{E}_{\mathrm{P}}(x, y)$. For if $\mathrm{L}(\mathrm{P}(s x+t y))=0$, the property of L implies that $\mathrm{P}(s x+t y) \notin \mathrm{M}$ and (hence) $s x+t y \in \mathrm{E}_{\mathrm{P}}(x, y)$. From the hypothesis on P we have that $Z_{\mathrm{LP}}(x, y) \subseteq \mathrm{T}_{\mathrm{G}}(x, y)$. Since all the hypothesis of Theorem 2.3 are now satisfied by LP and LQ and since $\mu x+$ $+v y \in Z_{\mathrm{LR}}(x, y)$, Theorem 2.3 implies the existence of elements $\alpha x+\beta y \in$ $\in \mathrm{T}_{\mathrm{G}}(x, y)$ and $\gamma x+\delta y \in \mathrm{Z}_{\mathrm{LQ}}(x, y)$ such that $\sigma^{2}=-\rho \Delta$ (with the same
interpretations as in Theorem 2．3）．Finally，since $\mathrm{Z}_{\mathrm{LQ}}(x, y) \subseteq \mathrm{E}_{\mathrm{Q}}(x, y)$ ， the theorem is proved．

The above theorem reduces essentially to Theorem 2.3 in the case when $V=\mathrm{K}$（see the discussion following the relation（2．4））．Furthermore，Theorem 2.4 furnishes the following result in terms of hermitian cones．

Corollary 2．5．Let E_{1} be a hermitian cone in E, M a fully supportable subset of V ，and let $\mathrm{P}, \mathrm{Q} \in \mathrm{P}_{n}^{*}$ such that $\mathrm{E}_{\mathrm{P}}(x, y) \subseteq \mathrm{E}_{1}$ for some linearly inde－ pendent elements $x, y \in \mathrm{E}$ ．If $\mu x+\nu y \in \mathrm{E}_{\mathrm{P} \wedge \mathrm{Q}}(x, y)$ ，then there exist elements $\alpha x+\beta y \in \mathrm{E}_{1}$ and $\gamma x+\delta y \in \mathrm{E}_{\mathrm{Q}}(x, y)$ such that $\sigma^{2}=-\rho \Delta$ ，where $\sigma=\mu / \nu$ ， $\rho=\gamma / \delta$ ，and $\Delta=\alpha / \beta$（with same interpretations as in Theorem 2．3）．

Proof．Let us take a nucleus N of E^{2} such that $(x, y) \in \mathrm{N}$（it is possible）． By Proposition I．I，there exists a circular cone $E_{0}(N, G)$ such that $E_{0}(N, G)=E_{1}$ and

$$
\begin{equation*}
\mathrm{E}_{\mathbf{1}} \cap \mathscr{L}\left[x^{\prime}, y^{\prime}\right]=\mathrm{T}_{\mathrm{G}}\left(x^{\prime}, y^{\prime}\right) \quad \forall\left(x^{\prime}, y^{\prime}\right) \in \mathrm{N} \tag{2.5}
\end{equation*}
$$

From the hypothesis on $\mathrm{E}_{\mathrm{P}}(x, y)$ and the relation（2．5）we conclude that $\mathrm{E}_{\mathrm{P}}(x, y) \subseteq \mathrm{T}_{\mathrm{G}}(x, y)$ ．By Theorem 2.4 and the relation（2．5），we get ele－ ments $\alpha x+\beta y \in \mathrm{E}_{1}$ and $\gamma x+\delta y \in \mathrm{E}_{\mathrm{Q}}(x, y)$ such that $\sigma^{2}=-\rho \Delta$ ．This completes our proof．

References

［I］N．Bourbaki（1952）－Eléments de mathématique．XIV．Part I，Les structures fonda－ mentales de l＇analyse．Livre II：Algèbre．Chap．VI：Groupes et corps ordonnés，＂Actualités Sci．Indust．＂，n．II79，Hermann，Paris．
［2］N．G．De Bruijn（1947）－Inequalities concerning polynomials in the complex domain， «Nederl．Akad．Wetensch．Proc．》，50，1265－1272＝«Indag．Math．»，9，591－598．
［3］A．CoHn（1922）－Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise，＂Math．Z．＂，I4，110－148．
［4］E．Egerváry（1922）－On a maximum－minimum problem and its connection with the roots of equations，＂Acta Sci．Math．（Szeged）»，I，38－45．
［5］E．Hille and R．S．Phillips（1957）－Functional Analysis and semigroups，＂Amer． Math．Soc．Colloq．Publ．»，3I，rev．ed．，Amer．Math．Soc．，Providence，R．I．
［6］L．Hörmander（1954）－On a theorem of Grace，＂Math．Scand．＂，2，55－64．
［7］M．Marden（I966）－Geometry of polynomials，2nd．ed．，Math．Surveys，n．3，＂Amer． Math．Soc．»，Providence，R．I．
［8］M．Marden（1966）－A generalization of a theorem of Bôcher，«SIAM J．Numer．Anal．》， 3，269－275．
［9］M．Marden（1969）－On composite abstract homogeneous polynomials，«Proc．Amer． Math．Soc．》，22，28－23．
［10］G．Szegö（1922）－Bemerkungen zu einem Satz von J．H．Grace über die Wurzeln alge－ braischer Gleichungen，＂Math．Z．》，I3，28－55．
［if］B．L．van der Waerden（i970）－Algebra．Vol．I，6th．ed．，Springer－Verlag，Berlin and New York，i964；Anglish translation，Ungar，New York．
［12］A．Wilansky（1964）－Functional Analysis，Blaisdell，New York．
[13] N. Zaheer (1971) - Null-sets of abstract homogeneous polynomials in vector spaces, Doctoral thesis, Univ. of Wisconsin, Milwaukee, Wisc.
[14] N. Zaheer (1976) - On polar relation of abstract homogeneous polynomials, «Trans. Amer. Math. Soc.", 2I8, 115-13I.
[15] N. Zaheer (1977) - On composite abstract homogeneous polynomials, «Trans. Amer. Math. Soc.», 228, 345-358.
[16] N. ZAHEER (1978) - On generalized polars of the product of abstract homogeneous polynomials, "Pacific J. Math.", 74, n. 2, 535-557.
[17] N. ZaHEER (I980) - On the theory of algebra-valued generalized polars, "Indiana Univ. Math. J.», 29, n. 5, 693-702.
[18] N. Zaheer and A. A. Khan - Cross-ratio theorems on generalized polars of abstract homogeneous polynomials, "Ann. di Math.», to appear.
[19] S. P. Zervos (1960) - Aspects modernes de la localisation des zéros des polynômes d'une variable, "Ann. Sci. École Norm. Sup.》, (3), 77, 303-410.

