Atti Accademia Nazionale dei Lincei Classe Scienze Fisiche Matematiche Naturali **RENDICONTI**

Arjeh M. Cohen, Hendrikus Adrianus Wilbrink

The stabilizer of Dye's spread on a hyperbolic quadric in $PG(4n^{-}1, 2)$ within the orthogonal group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **69** (1980), n.1-2, p. 22–25. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_69_1-2_22_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Geometria.** — The stabilizer of Dye's spread on a hyperbolic quadric in PG (4 n - 1, 2) within the orthogonal group. Nota (*) di A.M. COHEN & H.A. WILBRINK, presentata dal Socio G. ZAPPA.

RIASSUNTO. — Recentemente R. H. Dye ha costruito vibrazioni come indicato nel titolo. Egli ha determinato i loro stabilizzatori entro il gruppo ortogonale nei casi n = 2, 3. La presente nota riguarda il caso $n \ge 3$. Si fa uso della caratterizzazione di Holt di certi gruppi di permutazioni triplamente transitivi di grado $2^{2n-1} + 1$.

I. INTRODUCTION

The projective space PG (4 n - 1, 2) is viewed in the usual way as the incidence structure of 1- and 2-dimensional subspaces of the vector space \mathbf{F}_2^{4n} . The hyperbolic quadric Ω will be fixed as the set of projective points X in PG (4 n - 1, 2) whose homogenous coordinates $(X_1, X_2, \dots, X_{4n})$ satisfy

 $q(X) = X_1 X_2 + X_3 X_4 + \dots + X_{4n-1} X_{4n} = 0.$

The hyperbolic quadratic form q on PG (4n - 1, 2) admits a symplectic polarity that we shall denote by B. A spread on the quadric Ω is defined to be a partitioning $\mathscr{S} = \{S_1, \dots, S_{22n-1+1}\}$ of Ω into $2^{2n-1} + 1$ projective (2n - 1)-dimensional totally isotropic subspaces of (PG(4n - 1, 2), q).

2. CONSTRUCTION OF THE SPREAD

The following construction of a spread on Ω is to be found in [3]. Fix a nonisotropic point P and an isotropic point Q of (PG(4n-1,2),q)such that $B(P,Q) \neq 0$. Then the projective space H underlying $P^{I} \cap Q^{I}$ is a PG(4n-3,2) with symplectic polarity B_{0} induced by B. By means of scalar restriction from the Galois field $\mathbf{F}_{2^{2n-1}}$ to \mathbf{F}_{2} , the projective line $PG(1, 2^{2n-1})$ with nondegenerate symplectic polarity B_{1} can be regarded as a PG(4n-3,2) with nondegenerate symplectic polarity $\operatorname{trace}_{\mathbf{F}_{2^{2n-1}}|\mathbf{F}_{2}} \circ B_{1}$. Thus (H, B_{0}) can be identified with $(PG(1, 2^{2n-1}), \operatorname{trace}_{\mathbf{F}_{2^{2n-1}}|\mathbf{F}_{2}} \circ B_{1})$ whenever the latter is viewed as a projective space over \mathbf{F}_{2} . Under this identification, the points of $PG(1, 2^{2n-1})$ correspond to totally isotropic (2n-2)dimensional subspaces of (H, B_{0}) partitioning H. Next, H is mapped bijectively onto $P^{1} \cap \Omega$ by means of projection from P. Note that totally

(*) Pervenuta all'Accademia il 7 luglio 1980.

isotropic subspaces of (H, B_0) map into totally isotropic subspaces of $(P^1, q \mid_{P^1})$ inside Ω , so that the partitioning of (H, B_0) maps onto a partitioning of $P^1 \cap \Omega$ into totally isotropic subspaces. In order to obtain a spread, note that each of these (2n-2)-dimensional subspaces should be extended to a maximal totally isotropic subspace of (PG(4n-1,2),q). It follows from [2] that this can be done in precisely two different ways such that no two subspaces intersect. The two resulting spreads on Ω are mapped into one another by the symmetry with center P. Moreover, the subspaces belonging to one of these two spreads are all in the same $\Omega_{4n}^+(2)$ -orbit, where $\Omega_{4n}^+(2)$ stands for the commutator subgroup of the orthogonal group $O_{4n}^+(2)$ with respect to q. Hence, the spread is uniquely determined by the requirement that its elements are maximal totally isotropic subspaces from a fixed $\Omega_{4n}^+(2)$ -orbit. The spread thus constructed will be denoted \mathcal{P} .

3. THE STABILIZER OF THE SPREAD

Let G denote the stabilizer of the spread \mathscr{P} within $O_{4n}^+(2)$ and let G_R for R a point of PG (4 n - 1, 2) stand for the subgroup of G fixing R. Since $\Pr I_2(2^{2n-1})$ is in a canonical way a group of automorphisms of $(\Pr (1, 2^{2n-1}), \operatorname{trace}_{\mathbf{F}_2^{2n-1}|\mathbf{F}_2} \circ B_1)$ and thus of $(\mathbf{H}, \mathbf{B}_0)$, it can be embedded uniquely into G_P . This implies that G_P contains a subgroup K isomorphic to $\Pr I_2(2^{2n-1})$. The following lemma summarizes what is known about G from [3].

LEMMA. (Let q, \mathcal{P} , K and G be as above)

(i) K acts on \mathcal{P} as $\Pr \mathcal{L}_2(2^{2n-1})$ acts on $\Pr (I, 2^{2n-1})$;

(ii) $G_P = K \simeq P \prod_2 (2^{2n-1}); G_P$ has three orbits on the set of nonisotropic points of (PG(4n-1,2),q) with cardinalities $1, 2^{4n-2} - 1, 2^{2n-1}(2^{2n-1}-1);$

- (iii) If n = 2, then $G \simeq Alt(9)$;
- (iv) If n = 3, then $G = G_P \cong P\Gamma l_2(2^5)$.

The proof of (ii) can be found on page 191 in [3] in an argument that is valid in the present situation (though not explicitly stated).

Statement (iv) is demonstrated by use of specific knowledge of the subgroups of $Sp_6(2)$.

The theorem which we aim to prove, shows that (iv) is representative for what happens for $n \ge 3$.

THEOREM. Let $n \ge 3$. Suppose P is a nonisotropic point and Q an isotropic point of a nondegenerate hyperbolic space (PG (4 n - 1, 2), q) such that P + Q is a hyperbolic line. Let \mathcal{P} be the spread constructed in 2 departing from P and Q, and let G be as defined in 3. Then $G = G_P \cong P\Gamma I_2(2^{2n-1})$.

23

4. PROOF OF THE THEOREM

We proceed in four steps.

(4.1) G does not possess a normal subgroup which is regular on the set of nonisotropic points of (PG(4n - 1, 2), q).

Proof. Suppose N is a counterexample. Then G_P acts on N by conjugation as it does on the nonisotropic points. In particular N has two G_P -orbits distinct from $\{I\}$. Let p and q denote the orders of representatives from these two orbits. Then by Cauchy's lemma N has order $p^a q^b$ for $a, b \in \mathbf{N}$; moreover p and q are prime numbers. On the other hand, the regularity of N implies that i's order is $2^{2n-1}(2^{2n}-I)$. The comparison of these two expressions for |N| yields that $2^{2n}-I$ is a prime power, which is absurd.

(4.2) If N is a nontrivial normal subgroup of G, then $[G:N] = [G_P:N_P]$ is a divisor of 2n-1.

Proof. If $G = G_P$, the statement concerns $G \cong P\Gamma_2(2^{2n-1})$ and is known to hold. So we may assume $G > G_P$ for the rest of the proof. In view of the orbit structure of G_P described in (ii) of the lemma, this means that G is primitive on the set of nonisotropic points. So any nontrivial normal subgroup N of G is transitive on these $2^{2n-1}(2^{2n}-1)$ points, so $[G:N] = [G_P:N_P]$. Moreover N_P is normal in $G_P \cong P\Gamma_2(2^{2n-1})$, whence $N_P = I$ or we are through. The former possibility, however, is excluded by (4.1).

(4.3) The permutation representation of G on \mathcal{P} is faithful.

Proof. Let N be the kernel of this representation. If N is nontrivial, then $[G:N] = [G_P:N_P]$ by (4.2); but (i) of the lemma states that $N_P = I$, whence $[G:N] = |G_P|$, contradicting (4.2). The conclusion is that N is trivial.

(4.4) If $n \ge 3$, then $G = G_P$.

Proof. By (4.3) the group G can be regarded as a triply transitive permutation group of degree $2^{2n-1} + 1$. Application of a theorem by Holt [4] yields that G contains a normal subgroup N isomorphic to either Sym $(2^{2n-1} + 1)$, Alt $(2^{2n-1} + 1)$ or $PSl_2(2^{2n-1})$. Comparing orders with |G|, we obtain that N is an isomorph of $PSl_2(2^{2n-1})$. From (4.2) it follows that $G = G_P$.

Remarks. For n = 2, the arguments of the proof are equally valid. They result in: $G \cong P\Gamma I_2(2^{2n-1})$ or $G \cong Alt(9)$. Together with the observation that all spreads are in a single $O_{4n}^+(2)$ -orbit, this reestablishes (iii) of the lemma. De Clerck, Dye and Thas [I] have shown that any spread leads to a partial geometry with parameters $(s, t, \alpha) = (2^{2n-1} - I, 2^{2n-1}, 2^{2n-2})$ on the nonisotropic points of PG (4n - I, q). Using the above theorem, it is not hard to see that G is the part of the automorphism group of the partial geometry derived from \mathscr{P} that is contained in $O_{4n}^+(2)$.

References

- [2] J. DIEUDONNÉ La géometrie des groupes classiques,
- [3] R. H. DYE (1977) Partitions and their stabilizers for line complexes and quadrics, «Annali di Matematica pura ed applicata», (4), 114, 173-194.
- [4] D. F. HOLT (1977) Triply-transitive permutation groups in which an involution central in a Sylow 2-subgroup fixes a unique point, J. London «Math. Soc.», (2) 15, 55-65.

^[1] DE CLERCK, R. H. DYE and J. THAS; preprint.