Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Arjeh M. Cohen, Hendrikus Adrianus Wilbrink
 The stabilizer of Dye's spread on a hyperbolic quadric in $P G\left(4 n^{-} 1,2\right)$ within the orthogonal group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.1-2, p. 22-25.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_1-2_22_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - The stabilizer of Dye's spread on a hyperbolic quadric in $\operatorname{PG}(4 n-\mathrm{I}, 2)$ within the orthogonal group. Nota ${ }^{(*)}$ di A. M. Cohen e H.A. Wilbrink, presentata dal Socio G. Zappa.

Abstract

Riassunto. - Recentemente R.H. Dye ha costruito vibrazioni come indicato nel titolo. Egli ha determinato i loro stabilizzatori entro il gruppo ortogonale nei casi $n=2,3$. La presente nota riguarda il caso $n \geq 3$. Si fa uso della caratterizzazione di Holt di certi gruppi di permutazioni triplamente transitivi di grado $2^{2 n-1}+1$.

i. Introduction

The projective space $\operatorname{PG}(4 n-I, 2)$ is viewed in the usual way as the incidence structure of I - and 2 -dimensional subspaces of the vector space $\mathbf{F}_{2}^{4 n}$. The hyperbolic quadric Ω will be fixed as the set of projective points X in $\mathrm{PG}(4 n-I, 2)$ whose homogenous coordinates ($\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots, \mathrm{X}_{4 n}$) satisfy

$$
q(\mathrm{X})=\mathrm{X}_{1} \mathrm{X}_{2}+\mathrm{X}_{3} \mathrm{X}_{4}+\cdots+\mathrm{X}_{4 n-1} \mathrm{X}_{4 n}=0
$$

The hyperbolic quadratic form q on $\operatorname{PG}(4 n-1,2)$ admits a symplectic polarity that we shall denote by B. A spread on the quadric Ω is defined to be a partitioning $\mathscr{S}=\left\{\mathrm{S}_{1}, \cdots, \mathrm{~S}_{22 n-1_{1}}\right\}$ of Ω into $2^{2 n-1}+\mathrm{I}$ projective ($2 n-1$)-dimensional totally isotropic subspaces of ($\operatorname{PG}(4 n-I, 2), q$).

2. Construction of the spread

The following construction of a spread on Ω is to be found in [3]. Fix a nonisotropic point P and an isotropic point Q of ($\operatorname{PG}(4 n-\mathrm{I}, 2), q)$ such that $B(P, Q) \neq 0$. Then the projective space H underlying $P^{1} \cap Q^{1}$ is a $\operatorname{PG}(4 n-3,2)$ with symplectic polarity B_{0} induced by B . By means of scalar restriction from the Galois field $\mathbf{F}_{2 m n-1}$ to \mathbf{F}_{2}, the projective line PG (I, $2^{2 n-1}$) with nondegenerate symplectic polarity B_{1} can be regarded as a $\mathrm{PG}(4 n-3,2)$ with nondegenerate symplectic polarity $\operatorname{trace}_{\mathbf{F}_{2} 2 n-1 \mid \mathbf{F}_{2}} \circ \mathrm{~B}_{\mathbf{1}}$. Thus ($\mathrm{H}, \mathrm{B}_{0}$) can be identified with ($\mathrm{PG}\left(1,2^{2 r-1}\right)$, $\operatorname{trace}_{\mathbf{F}_{2} 2 n-1 \mid \mathbf{F}_{2}} \circ \mathrm{~B}_{1}$) whenever the latter is viewed as a projective space over \mathbf{F}_{2}. Under this identification, the points of $\operatorname{PG}\left(1,2^{2 n-1}\right)$ correspond to totally isotropic ($2 n-2$)dimensional subspaces of ($\mathrm{H}, \mathrm{B}_{0}$) partitioning H. Next, H is mapped bijectively onto $\mathrm{P}^{\perp} \cap \Omega$ by means of projection from P . Note that totally
isotropic subspaces of ($\mathrm{H}, \mathrm{B}_{0}$) map into totally isotropic subspaces of ($\mathrm{P}^{\perp},\left.q\right|_{\mathrm{P}} \mathrm{L}$) inside Ω, so that the partitioning of ($\mathrm{H}, \mathrm{B}_{0}$) maps onto a partitioning of $\mathrm{P}^{\perp} \cap \Omega$ into totally isotropic subspaces. In order to obtain a spread, note that each of these ($2 n-2$)-dimensional subspaces should be extended to a maximal totally isotropic subspace of ($\mathrm{PG}(4 n-\mathrm{I}, 2), q$). It follows from [2] that this can be done in precisely two different ways such that no two subspaces intersect. The two resulting spreads on Ω are mapped into one another by the symmetry with center P. Moreover, the subspaces belonging to one of these two spreads are all in the same $\Omega_{4 n}^{+}$(2)-orbit, where $\Omega_{4 n}^{+}(2)$ stands for the commutator subgroup of the orthogonal group $\mathrm{O}_{4 n}^{+}(2)$ with respect to q. Hence, the spread is uniquely determined by the requirement that its elements are maximal totally isotropic subspaces from a fixed $\Omega_{4 n}^{+}(2)$-orbit. The spread thus constructed will be denoted \mathscr{P}.

3. The stabilizer of the spread

Let G denote the stabilizer of the spread \mathscr{P} within $\mathrm{O}_{4 n}^{+}(2)$ and let G_{R} for R a point of $P G(4 n-1,2)$ stand for the subgroup of G fixing R. Since $\mathrm{P} \mathrm{\Gamma} l_{2}\left(2^{2 n-1}\right)$ is in a canonical way a group of automorphisms of (PG (I, $2^{\mathbf{2 n - 1}}$), $\operatorname{trace}_{\mathbf{F}_{2} 2 n-\mathbf{1} \mid \mathbf{F}_{2}} \circ \mathrm{~B}_{1}$) and thus of ($\mathrm{H}, \mathrm{B}_{0}$), it can be embedded uniquely into G_{P}. This implies that G_{P} contains a subgroup K isomorphic to $\mathrm{P} l_{2}\left(2^{2 n-1}\right)$. The following lemma summarizes what is known about G from [3].

Lemma. (Let $q, \mathscr{P}, \mathrm{~K}$ and G be as above)
(i) K acts on \mathscr{P} as $\mathrm{P} l_{2}\left(2^{2 n-1}\right)$ acts on $\mathrm{PG}\left(\mathrm{I}, 2^{2 n-1}\right)$;
(ii) $\mathrm{G}_{\mathrm{P}}=\mathrm{K} \cong \mathrm{P} l_{2}\left(2^{2 n-1}\right) ; \mathrm{G}_{\mathrm{P}}$ has three orbits on the set of nonisotropic points of $(\operatorname{PG}(4 n-1,2), q)$ with cardinalities $1,2^{4 n-2}-1$, $2^{2 n-1}\left(2^{2 n-1}-1\right) ;$
(iii) If $n=2$, then $\mathrm{G} \cong$ Alt (9);
(iv) If $n=3$, then $\mathrm{G}=\mathrm{G}_{\mathrm{P}} \cong \mathrm{P} \mathrm{\Gamma} l_{2}\left(2^{5}\right)$.

The proof of (ii) can be found on page 191 in [3] in an argument that is valid in the present situation (though not explicity stated).

Statement (iv) is demonstrated by use of specific knowledge of the subgroups of $S p_{6}$ (2).

The theorem which we aim to prove, shows that (iv) is representative for what happens for $n \geq 3$.

Theorem. Let $n \geq 3$. Suppose P is a nonisotropic point and Q an isotropic point of a nondegenerate hyperbolic space (PG ($4 n-1,2$), q) such that $\mathrm{P}+\mathrm{Q}$ is a hyperbolic line. Let \mathscr{P} be the spread constructed in 2 departing from P and Q , and let G be as defined in 3. Then $\mathrm{G}=\mathrm{G}_{\mathrm{P}} \cong \mathrm{P} \Gamma l_{2}\left(2^{2 n-1}\right)$.

4. Proof of the theorem

We proceed in four steps.
(4.1) G does not possess a normal subgroup which is regular on the set of nonisotropic points of (PG (4n-1,2),q).

Proof. Suppose N is a counterexample. Then G_{P} acts on N by conjugation as it does on the nonisotropic points. In particular N has two G_{p}-orbits distinct from $\{\mathrm{I}\}$. Let p and q denote the orders of representatives from these two orbits. Then by Cauchy's lemma N has order $p^{a} q^{b}$ for $a, b \in \mathbf{N}$; moreover p and q are prime numbers. On the other hand, the regularity of N implies that is order is $2^{2 n-1}\left(2^{2 n}-1\right)$. The comparison of these two expressions for $|\mathrm{N}|$ yields that $2^{2 n}$ - I is a prime power, which is absurd.
(4.2) If N is a nontrivial normal subgroup of G , then $\left.[\mathrm{G}: \mathrm{N}]={ }^{[} \mathrm{G}_{\mathrm{P}}: \mathrm{N}_{\mathrm{P}}\right]$ is a divisor of $2 n-1$.

Proof. If $\mathrm{G}=\mathrm{G}_{\mathrm{P}}$, the statement concerns $\mathrm{G} \cong \mathrm{P} \Gamma l_{2}\left(2^{2 n-1}\right)$ and is known to hold. So we may assume $G>G_{P}$ for the rest of the proof. In view of the orbit structure of G_{P} described in (ii) of the lemma, this means that G is primitive on the set of nonisotropic points. So any nontrivial normal subgroup N of G is transitive on these $2^{2 n-1}\left(2^{2 n}-1\right)$ points, so $[G: N]=\left[G_{P}: N_{P}\right]$. Moreover N_{P} is normal in $G_{P} \cong P \Gamma l_{2}\left(2^{2 n-1}\right)$, whence $N_{P}=I$ or we are through. The former possibility, however, is excluded by (4.1).

(4.3) The permutation representation of G on \mathscr{P} is faithful.

Proof. Let N be the kernel of this representation. If N is nontrivial, then $[G: N]=\left[G_{p}: N_{P}\right]$ by (4.2); but (i) of the lemma states that $N_{P}=\mathrm{I}$, whence $[G: N]=\left|G_{P}\right|$, contradicting (4.2). The conclusion is that N is trivial.
(4.4) If $n \geq 3$, then $G=G_{p}$.

Proof. By (4.3) the group G can be regarded as a triply transitive permutation group of degree $2^{2 n-1}+1$. Application of a theorem by Holt [4] yields that G contains a normal subgroup N isomorphic to either $\operatorname{Sym}\left(2^{2 n-1}+1\right)$, Alt $\left(2^{2 n-1}+1\right)$ or $\mathrm{PS}_{2}\left(2^{2 n-1}\right)$. Comparing orders with $|\mathrm{G}|$, we obtain that N is an isomorph of $\mathrm{PSl}_{2}\left(2^{2 n-1}\right)$. From (4.2) it follows that $G=G_{P}$.

Remarks. For $n=2$, the arguments of the proof are equally valid. They result in: $\mathrm{G} \cong \mathrm{P} \Gamma l_{2}\left(2^{2 n-1}\right)$ or $\mathrm{G} \cong$ Alt (9). Together with the observation that all spreads are in a single $\mathrm{O}_{4 n}^{+}$(2)-orbit, this reestablishes (iii) of the lemma.

De Clerck, Dye and Thas [1] have shown that any spread leads to a partial geometry with parameters $(s, t, \alpha)=\left(2^{2 n-1}-\mathrm{I}, 2^{2 n-1}, 2^{2 n-2}\right)$ on the nonisotropic points of $\mathrm{PG}(4 n-\mathrm{I}, q)$. Using the above theorem, it is not hard to see that G is the part of the automorphism group of the partial geometry derived from \mathscr{P} that is contained in $\mathrm{O}_{4 n}^{+}(2)$.

References

[I] De Clerck, R. H. Dye and J. Thas; preprint.
[2] J. Dieudonné - La géometrie des groupes classiques,
[3] R. H. Dye (1977) - Partitions and their stabilizers for line complexes and quadrics, "Annali di Matematica pura ed applicata», (4), II4, 173-194.
[4] D. F. Holt (1977) - Triply-transitive permutation groups in which an involution central in a Sylow 2-subgroup fixes a unique point, J. London "Math. Soc.》, (2) 15, 55-65.

