ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Edoardo Ballico, Arturo V. Ferreira, Pier Daniele Napolitani

On first Čech groups H^0 , H^1 of maximal ideal spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.4, p. 267–271. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_4_267_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1980.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 12 aprile 1980 Presiede il Presidente della Classe Antonio Carrelli

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On first Cech groups H⁰, H¹ of maximal ideal spaces. Nota di Edoardo Ballico, Arturo V. Ferreira e Pier Daniele Napolitani, presentata ^(*) dal Corrisp. E. Vesentini.

RIASSUNTO. — Si stabilisce un rapporto fra i primi gruppi di coomologia dello spazio strutturale e la struttura algebrica di un'algebra topologica commutativa.

1. This note and [1] are the first of a series on the use of algebraic topology in the study of general topological algebras with various applications to complex analysis; next we will treat subjects involving the Chern character and Picard groups.

A will denote a complex unitary complete topological algebra whose topology can be defined by a system of algebra seminorms. Suppose \mathcal{N} is a filtering system of algebra seminorms which defines the topology of A. For each $p \in \mathcal{N}$ we denote by A_p the completion of the normed algebra (A/kerp, p/kerp), p the norm on A_p , and by π_p the algebra morphism $A \to A_p$ that is obtained by composing the canonical epimorphism $A \to A/kerp$ and the natural injection $A/kerp \to A_p$. We have ker $\pi_p = \text{kerp}$ and, if $q \in \mathcal{N}$ is finer than p, the natural mapping $A/kerq \to A/kerp$ extends as a (continuous) algebra morphism $\pi_{pq}: A_q \to A_p$. As we will have $\pi_p = \pi_{pq} \circ \pi_q$, the system (A_p, π_{pq}) gives rise to a projective limit with which A can be identified because A is complete.

(*) Nella seduta del 12 aprile 1980.

19 - RENDICONTI 1980, vol. LXVIII, fasc. 4.

Let A* denote the group of invertible elements in A. When A* is known to be open (which is the case if A is Banach), if $p \in \mathcal{N}$ is a seminorm for which some *p*-ball centered at I is contained in A*, then for each $a \in A$, $sp_A(a)$ is a compact subset of **C** equal to $sp_{A_p}(a)$ and therefore $a \in A^*$ whenever the spectral radius of a - 1 in A_p is < 1; in particular, the open *p*-ball centered at I of radius I is contained in A*.

In the sequel of the present note A will be supposed moreover commutative. Each closed maximal ideal is the kernel of a continuous complex character on A by the Gel'fand-Mazur theorem, so that the weak*—dual A' induces on the set Σ (A) of closed maximal ideals a topology γ (the Gel'fand topology) which is the coarser one that renders continuous Gel' fand transforms \hat{a} of elements a in A. On the other hand, the transposed mappings ${}^{t}\pi_{p}: A_{p}^{'} \rightarrow A'$ are injective and therefore, if we identify each Σ (A_p), which is compact for its Gel'fand topology, with its image in Σ (A) by ${}^{t}\pi_{p}$, we will obtain Σ (A) = $\bigcup_{p \in \mathcal{N}} \Sigma$ (A_p). This enables us to consider on Σ (A) another useful topology λ finer, and in general different from Gel'fand topology—the inductive limit topology of the compact spaces Σ (A_p). When A* is open in A (which is always the case if A is barrelled and Σ (A)_{γ} is compact), there is ϕ in \mathcal{N} for which we have Σ (A)_{γ} = Σ (A)_{λ} = Σ (A_p)_{γ}.

The Gel' fand transform $\hat{}$ is a (unitary) algebra morphism $A \to \mathscr{C}(\Sigma(A))$ when $\Sigma(A)$ is given the γ or λ topology. $\mathscr{C}(\Sigma(A)_{\lambda})$ is a complete algebra when endowed with the topology of uniform convergence on the compact sets $\Sigma(A_p)$, $p \in \mathscr{N}$, and $\hat{}$ is then continuous. On the algebra $\mathscr{C}(\Sigma(A)_{\gamma})$ will be not considered any topology; however it contains the pointwise limit e^f of the exponential series for any $f \in \mathscr{C}(\Sigma(A)_{\gamma})$.

Now, we turn to describe $H^0(\Sigma(A))$. This group is intimately connected to the Boolean structure of open-closed subsets of $\Sigma(A)_Y$, $\Sigma(A)_\lambda$, and so must be closely related to the system I of idempotents of A. What we are doing is just to illuminate this point.

Consider the group homomorphism $\exp : A \to A^*$ which sends *a* into $e^{2\pi i a}$, its kernel E and its image U. We have clearly $U \subset A^1$, the connected component of 1 in A* which is thus a closed subgroup of A*. If A reduces to the complex number field we have $U = A^1 = A^*$; when A* is open in A, A* is locally connected, and by using the logaritmic series we see at once that U is open in A* which implies $U = A^1$. In general however, A¹ is not open in A*, U is not open in A¹ and we may have $U \neq A^1$. For example, in the product algebra $A = \mathscr{C}(\mathbf{T})^{\mathbf{N}}$, **T** the unidimensional torus, we have A^* not open in A, $U = A^1$ not open in A*. In the algebra $A = \mathscr{C}(\mathbf{T})$ endowed with the topology of uniform convergence on convergent sequences, $U \neq A^1$ and is dense in $A^1 = A^*$.

The discussion of the groups U, A^1 will be continued in paragraph 2; for the time being we are mainly interested in the group E.

First we observe that every element in E has an integer-valued Gel'fand transform and the intersection of E with the radical R(A) (which is equal to

the kernel of the Gel'fand transform $\hat{}$) reduces to 0. This implies that E is a discrete subset of A. In particular, every convergent sequence in E must be constant from a certain point on.

It is clear that $E \supset I$ and because E can be considered as a **Z**-module, every finite linear combination with integer coefficients of elements of I belongs to E. Let us establish the converse.

Consider an element e in E; its Gel'fand transform \hat{e} is integer-valued so that, if we denote for each $n \in \mathbb{Z}$ by γ_n the circle centered at n with radius 1/4 in the complex plane oriented as usual, the integral $(1/2 \pi i) \int_{\gamma_n} (\lambda - e)^{-1} d\lambda$

exists in A and we shall represent its values by $j_n(e)$. Fix n_1 , n_2 in **Z**; by a straightforward use of the analytic calculus we recognize that for each $p \in \mathcal{N}$,

$$\pi_p(j_{n_1}(e)j_{n_2}(e)) = \left[(1/2 \pi i) \int\limits_{\mathbf{Y}_{n_1}} (\lambda - \pi_p(e))^{-1} d\lambda \right] \left[(1/2 \pi i) \int\limits_{\mathbf{Y}_{n_2}} (\lambda - \pi_p(e))^{-1} d\lambda \right]$$

is 0 when $n_1 \neq n_2$ and equals $\pi_p(j_{n_1}(e))$ if $n_1 = n_2$. Hence $j_{n_1}(e)$ is an idempotent in A which is orthogonal to every $j_{n_2}(e)$ with $n_1 \neq n_2$. Moreover, since given $p \in \mathcal{N}$, $\int_{\gamma_n} (\lambda - \pi_p(e))^{-1} d\lambda$ is zero whenever $n \notin sp_{A_p}(\pi_p(e))$, we can

conclude that $p(j_n(e)) = 0$ for $n \notin sp_{A_p}(\pi_p(e))$ which means just that for every $p \in \mathcal{N}$, $p(j_n(e)) = 0$ except for finitely-many n in **Z**! There follows that the series $\sum_{n \in \mathbf{Z}} n j_n(e)$, $\sum_{n \in \mathbf{Z}} j_n(e)$ are absolutely convergent in A. We have clearly $\sum_{n \in \mathbf{Z}} n j_n(e)$, $\sum_{n \in \mathbf{Z}} j_n(e) \in \mathbf{E}$ and $\left(\sum_{n \in \mathbf{Z}} n j_n(e)\right)^2 = \hat{e}$, $\left(\sum_{n \in \mathbf{Z}} j_n(e)\right)^2 = \hat{\mathbf{I}}$ which means actually that $\sum_{n \in \mathbf{Z}} n j_n(e) = e$ and $\sum_{n \in \mathbf{Z}} j_n(e) = \mathbf{I}$; such a decomposition of e is obviously unique. We have thus proved the following generalisation of a known result of Banach algebra theory:

LEMMA 1. E contains the sum of every absolutely convergent series of integral multiples of idempotents. Each element e of E is the sum of a uniquely determined series $\sum_{n \in \mathbb{Z}} n j_n(e)$ of integer multiples of pairwise orthogonal idempotents with sum 1. If on A exists a continuous norm, then only finitely-many $j_n(e)$ are $\neq 0$.

We are now in a position to prove

THEOREM 1. We have $H^{0}(\Sigma(A)_{\gamma}, \mathbb{Z}) = H^{0}(\Sigma(A)_{\lambda}, \mathbb{Z})$ and E is naturally isomorphic to these groups.

Proof. The Gel'fand transform of an $e \in E$ is a convergent series with integer coefficients of characteristic functions of closed—open subsets of $\Sigma(A)$ with disjoint supports and so we have a natural homomorphism $E \to H^0(\Sigma(A)_{\gamma}, \mathbb{Z})$; we shall denote by ι its composition with the inclusion $H^0(\Sigma(A)_{\gamma}, \mathbb{Z}) \to H^0(\Sigma(A)_{\lambda}, \mathbb{Z})$. Let us verify that ι is onto.

Take an element of $H^0(\Sigma(A)_{\lambda}, \mathbb{Z})$, we can associate with it in a stardard way an integer-valued continuous function θ ; we claim just that $\theta = \hat{e}$ for some e in E. Fix n in \mathbb{Z} and for each $p \in \mathcal{N}$ denote by j_n^p the unique idempotent in A_p for which we have according to Šilov idempotent's theorem, that $(j_n^p)^{\wedge}$ is the characteristic function of $\theta^{-1}(n) \cap \Sigma(A_p)$. We also must have $\pi_{pq}(j_n^q) = j_n^p$ for $\pi_{pq}(j_n^q)^{\wedge} = (j_n^p)^{\wedge}$, whenever q is finer than p. It follows that there is j_n in I for which $\pi_p(j_n) = j_n^p$, $p \in \mathcal{N}$. Now, the series $\sum_{n \in \mathbb{Z}} nj_n$ converges in A because for fixed $p \in \mathcal{N}$ only finitely-many $p(j_n)$ are $\neq 0$ and so its sum is the claimed $e \in E$.

2. This paragraph concerns the group $H^{1}(\Sigma(A), \mathbb{Z})$. First we prove

PROPOSITION 1. $\hat{U} = \exp(\mathscr{C}(\Sigma(A)_{\lambda})) \cap \hat{A};$ moreover, if $f \in \mathscr{C}(\Sigma(A)_{\lambda})$ satisfies the equation $\hat{a} = \exp(f)$ for some $a \in A$, there exists a unique $b \in A$ such that $a = \exp(b)$ and $\hat{b} = f$. Therefore the Gel'fand transform establishes an isomorphism into

$$\mathbf{A}^*/\mathbf{U} \to \mathscr{C}\left(\Sigma\left(\mathbf{A}\right)_{\lambda}\right)^*/\exp\left(\mathscr{C}\left(\Sigma\left(\mathbf{A}\right)_{\lambda}\right)\right).$$

PROPOSITION 1'. U is dense in A¹ and A¹ = $\lim_{\leftarrow} (\exp(A_p), \pi_{pq})$. Also $(A^1)^{\hat{}} = \mathscr{C}(\Sigma(A)_{\lambda})^1 \cap \hat{A}$. Gel'fand transform induces an isomorphism into

 $A^*/A^1 \to \mathscr{C} (\Sigma (A)_{\lambda})^*/\mathscr{C} (\Sigma (A)_{\lambda})^1 .$

Proof of proposition I. The uniqueness part is clear from the fact zero is the unique solution of $\exp(x) = 1$ in R (A). To prove the existence it suffices for each $p \in \mathcal{N}$ to solve the equation $\pi_p(a) = \exp(b_p)$, $\hat{b}_p = f_{|\Sigma(A_p)}$ in A_p , which is possible by using analytic calculus, and observe that $(b_p)_{p \in \mathcal{N}}$ belongs to lim A_p .

Proof of proposition 1'. We first show that U is dense in A¹. Let $a \in A^1$, $p \in \mathcal{N}$ and δ be a real number > 0. $\pi_p(A^1) \subset A_p^1 = \exp(A_p)$ because $\pi_p(A^1)$ must be connected and contains 1. Hence $\pi_p(a) = \exp(b_p)$ with $b_p \in A_p$, and by choosing some b in A whith $\dot{p}(\exp(\pi_p(b)) - \exp(b_p)) < \delta$, which is possible because $\pi_p(A)$ is dense in A_p , we have in A, $\dot{p}(\exp(b) - a) < \delta$. The argument also establishes the first equality relation. $(A^1)^{\uparrow} \subset \mathscr{C}(\Sigma(A)_{\lambda})^1$ is clear; the converse inclusion is a consequence of the following approximation lemma:

LEMMA 2. Let $a \in A^*$ be such that \hat{a} is in the closure $\mathscr{C}(\Sigma(A)_{\lambda})^1$ of $\exp(\mathscr{C}(\Sigma(A)_{\lambda}))$; then a is in the closure A^1 of U.

Proof. It is enough to observe that for each $p \in \mathcal{N}$, $\hat{a}_{|\Sigma(A_p)} = \pi_p(a)^{\uparrow} \in \mathcal{C}(\Sigma(A_p))^1 = \exp(\mathcal{C}(\Sigma(A_p)))$ and then apply an argument similar to the first part of the proof of proposition 1'.

Let τ be one of the topologies γ or λ , denote by \mathscr{C}_{τ} the sheaf of germs of continuous functions and by \mathscr{C}_{τ}^{*} the sheaf of germs of continuous invertible functions on $\Sigma(A)_{\tau}$.

The commutative diagram of exact sequences of sheaves

implies a commutative diagram of cohomology sequences

which tells us that $H^0(\Sigma(A)_{\tau}, \mathbf{Z})$ is just the kernel of the considered exponential function whereas ker v_{τ} is its cokernel. In particular, if $H^1(\Sigma(A)_{\tau}, \mathscr{C}_{\tau})$ vanishes, we have $\mathscr{C}^*(\Sigma(A)_{\tau})/\exp(\mathscr{C}(\Sigma(A)_{\tau})) = H^1(\Sigma(A)_{\tau}, \mathbf{Z})$; this is mainly the case whenever $\Sigma(A)_{\tau}$ is paracompact because $\Sigma(A)_{\tau}$ being also completely regular, the sheaf \mathscr{C}_{τ} is soft.

By applying the classical H¹-theorem of Arens and Royden for Banach algebras it is now easy to draw a lot of consequences from the information which is contained in the above diagrams. Here we will only explicitate what can be said in general without further hypothesis on A or Σ (A). In another paper Fréchet and Schwartz algebras will be considered.

THEOREM 2. We have a commutative diagram of injective homomorphisms

$$\begin{array}{c} \mathbf{A}^{*}/\mathbf{A}^{1} \rightarrow \lim_{\leftarrow} \mathbf{A}_{p}^{*}/\exp\left(\mathbf{A}_{p}\right) \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow^{\natural} \\ & \downarrow^{\natural} \\ & \overset{\flat}{\mathscr{C}} (\Sigma\left(\mathbf{A}\right)_{\lambda})^{*}/\mathscr{C} (\Sigma\left(\mathbf{A}\right)_{\lambda})^{1} \rightarrow \lim_{\leftarrow} \mathscr{C} (\Sigma\left(\mathbf{A}_{p}\right))^{*}/\exp\left(\mathscr{C}\left(\Sigma\left(\mathbf{A}_{p}\right)\right) \\ \end{array}$$

and $\lim_{\leftarrow} \mathbf{A}_{p}^{\star}/\exp\left(\mathbf{A}_{p}\right) \xrightarrow{\sim} \lim_{\leftarrow} \mathbf{H}^{1}\left(\Sigma\left(\mathbf{A}_{p}\right), \mathbf{Z}\right).$

THEOREM 2'. Let $\Sigma(A)^{\tau}$ be the maximal ideal space of the algebra of continuous bounded functions on $\Sigma(A)_{\tau}$ with the uniform norm. Then the group $\mathscr{C}(\Sigma(A)_{\tau})^*/\exp(\mathscr{C}(\Sigma(A)_{\tau}))$ is isomorphic to the image of the natural homorphism $H^1(\Sigma(A)^{\tau}, \mathbb{Z}) \to H^1(\Sigma(A)_{\tau}, \mathbb{Z})$.

References

[1] A.V. FERREIRA-P.D. NAPOLITANI (1980) - On invertible holomorphic functions with values in a topological algebra, «Rend. Acc. Naz. Lincei», 68.