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Fisica m atem atica (Term odinam ica). —  Proof that m y work 
estimate implies the Clausius-Planck inequality. Nota del Socio 
straniero C l if f o r d  T r u e s d e l l .

RIASSUNTO. — Ammessa la Prima Legge della Termodinamica, si prova la validità 
della Seconda Legge (Clausius-Planck) come conseguenza di una limitazione superiore per il 
rendimento di una macchina termica (anche irreversible), pubblicata dall’A. nel 1973-

Some years ago I showed [1] that the First Law of Thermodynamics,

I . B a c k g r o u n d

(I) L +  AE =  C ,

and the integrated Clausius-Planck Inequality,
h

h
implied a general estimate for the work done:

( W o )

The notations are explained as follows:

L =  work done by the body in question plus kinetic energy gained by 
it in the interval of time \tx , /2] ,
h

h
C+ =  heat absorbed by the body in [/x , t2]

'2

h
C~ =  heat emitted by the body in \tx , t2]

h

h

(*) Presentata nella seduta delP8 marzo 1980.
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E — internal energy of the body,
A /:  =  increment of / i n  a specified closed interval,
Q =  heating of the body,
0 ■ '=  absolute temperature of the body,
H =  entropy of the body,

0min , Omax : =  minimum and maximum values of 0 during the closed interval 
to which L , AE , AH , C+ , and C~ refer.

The quantities L , E , Q , 0 , and H are functions of time only, Thus the 
formulation is appropriate to the thermodynamics of homogeneous processes, 
in which all parts of a body have a common temperature at any one time. 
Q is assumed to be bounded and continuous except at a finite number of points, 
so it is integrable in the sense of Euler and Cauchy; 0 is positive and contin
uous.

Fosdick and Serrin [2] later considered the effect of replacing (C-P) as 
an axiom by the Clausius-Duhem inequality for a single body subject to a 
non-uniform field of temperature. They supposed that body to be in contact 
with a reservoir at uniform but possibly time-dependent temperature t , and 
they related the temperature at points in the body or on its surface, to the 
bath temperature t through Maxwell’s heat-transfer inequalities. They con
cluded that

(W h- b) L +  AE ^  ( i  _  c+ +  Tmln AH .
\ Tmax /

Fosdick and Serrin noted also that the full strength of the First Law was not 
necessary for the proofs of these work estimates: The weaker inequality

(I-)' L + A E r g C

would do just as well as (I).
Still later, Muncaster and I noticed [3] that Fosdick and Serrin’s assump

tions sufficed for the truth of the heat-bath inequality:

h
(H—B) A H ^ J / c E .

h

This inequality has just the same form as (C—P), but it differs in meaning, 
for t (f) is the temperature of the surroundings of the body at the time t i and 
nothing need be assumed directly about the temperature field within and 
upon the surface of the body to which L , Q , AE, and AH refer.

It is plain that if (W0) is replaced by (W h- b) while (C—P) is replaced 
by (H—B), the difference is one of notation alone. Therefore, if (I~) and 
(C—P) i=> (Wo), then also (I- ) and (H—B) » (W h _b ). Thus to derive their 
result (W h_b), which refers to no temperatures other than those of the



C liffo r d  T r u e sd e ll, Proof that my work estimate, ecc. 193

surroundings of the body with which L , AE , C+, and AH are associated, 
Fosdick and Serrin need not have appealed to the Clausius-Duhem inequal
ity and to Maxwell’s heat transfer inequalities. To obtain their results, the 
heat-bath inequality (H—B) suffices.

2. P rogram

My purpose here is to prove a converse to my theorem on the maximum 
work done in a homogeneous process and at the same time a converse to 
Fosdick and Serrin’s extension of it to a body in a heat bath. Only the formal 
structure provided by (I) and (W0) is needed. In fact it suffices to replace 
(I) by a weaker statement which is the opposite of (I~) :

(1+) L +  AE ^  C .

Subject to specified assumptions of smoothness, I shall establish the schema

(I+) and (W0) (C—P) .

The schema previously established is

(I-) and (C—P) »=► (W0) .

From the two together we conclude the schema

(I) and (W0) <=> (I) and (C—P) .

The same reasoning applies when (W0) is replaced by (Wh- b)- Therefore, 
both for a body in which the field of temperature is constant at each time and 
for a body immersed in a heat bath we may replace the usual “ Second Law ” 
by a mathematically equivalent assumption about the maximum possible 
work done by an assigned amount of heat absorbed, in association with assigned 
increments of [energy and entropy.

We shall now render the new schema precise. To make the reasoning 
clearer we shall at first replace 0min and 0max by virtually arbitrary positive 
functions a and b defined on the set of closed subintervals of [A , t2] .

3. T h e  m a in  in e q u a l it y  a n d  it s  m a in  c o n se q u e n c e

We begin from a general inequality which subsumes (Wu) and (Wh_b)-

(Wgen) L +  AE ^ C+ +  ^AH .

Combining this inequality with (I+) yields

c+ c-
~b a
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The quantities a and b here are positive constants associated with the interval 
to which the symbol A refers, say \t0 — h , /0 +  h\. Then

tQ +A

T - T  =  l ì  j  (Q +  IQ I)& +  —  J (Q — IQ l)d< =
£0—̂ £0—̂

= i(4 n V Qd'~ i (4 - T ) / |,2ld'-
We fix t0 ; then a and b become functions of h alone. We assume that Q is 
continuous on [t0—■ h , t0 k]> so we may use the mean-value theorem to 
express the integrals above in terms of numbers  ̂ and yj in the interval 
\ ~ h  \K\ :

Tk{^ò~~^)  = ì ('7 + t ) Q( 0̂ + ?)~ ì (t ~ t ) IQ(a, + 7î)I'
Thus the above inequality for AH can be written as

4 x s ì ( Ì  + t ) ,3<ì" + $) - ì (t - t ) i'Qä  + 'DI-
This main inequality allows several deductions. For most of these we 

consider a positive, continuous function 0  on the interval [t0 — h , t0 +  h \  
and we take a and b as 0min and ©max. Then (Wgen) becomes my original work 
inequality (W0) if 0  =  0, Fosdick and Serrin’s generalization if © =  t. 
With © uncommitted we obtain from the main inequality its main consequence:

4 1 a  i  ( ^ + 1 ^ )  «  ^ + 5 > -  ^  I «  < ' • + ’ > I •

4. T h e  th e o r e m  a n d  o th e r  c o n se q u e n c e s

Since 0  is a continuous function on [t0 — h , t0 +  h \  there are numbers 
& and s in [— h , h\ such that

©min =  0  (tQ +  s )  , ©max =  ©  ( / 0 ~b S) .

Then the main consequence takes the form

AH s *.(■« sW +W r* r)QlÄ+5>
~ h (  ® « , '+  «) -  © ( 4 +  8) ) , Q A + ^ 1 •

Now we suppose that Q is continuous on some closed interval. We partition 
that interval into n equal subintervals and apply the foregoing inequality
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to each. We sum these n inequalities, let n tend to oo, appeal to the definition 
and existence theorem for the Euler-Cauchy integral of a continuous function, 
and so establish (C—P). Finally we consider a Q which is bounded and has 
only finitely many discontinuities. Then we may write (G—P) for each subin
terval on which Q is continuous. Summing the finite sequence of inequalities 
so obtained, we demonstrate the following

T h e o r e m . Let L , Q , E, and © be functions of time on the interval [L , tf\\ 
let 0  be positive and continuous\ let Q be integrable in the Euler-Cauchy sense; 
and suppose that on all closed subintervals of \tx, t2]

(1+) L +  AE ^  C ,

and L +  AE ^  ( i — C+ +  0 ^  AH .
\  v m a x  /

Then
h

(C—P) AH Sg j  —- d t .
h

Of course AH =  H (t2) — H (^), while C , C+, and C“ are determined from Q 
by the definitions given in § i . This theorem establishes the first schema 
stated in § 2 and hence also the equivalence stated there.

Assumptions partly weaker and partly stronger suffice to draw another 
conclusion from the main inequality. Namely, if we consider a time t0 at which 
H is differentiable, then we need only assume that a and b are continuous 
functions of h at h — o to conclude that

* 1 (tW + t Jo) ) Q -  4 -  w ) 1Q1 •

J  -ï w  i{ Q - ° ■

This inequality is to be interpreted in terms of the generalized work estimate 
(Wgen)• The choice a =  ©min , b =  ©max reduces the new inequality to identity 
with the former one at times when H is differentiable: ©H ^  Q.

The main consequence in § 3 allows us to infer also a coarse lower bound 
for AH in a closed interval of time during which Q is continuous, namely

AH
~Kt 4 (  © b "  +  " a b )  Qmln“ ì  ( ® b ~  © b ) 1Q lmax-
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5. C om m ents on t e a c h in g

I think the equivalence stated in § 2 provides a way to introduce the 
Second Law for possibly irreversible processes that beginners in engineering 
may find more suggestive than the traditional mysticism about entropy. The 
teacher may tell his students something along these lines: We have proved 
the existence of internal energy E and entropy H for bodies susceptible only 
of reversible processes. For general processes, possibly irreversible, we shall 
assume that the quantities E and H as functions of time still exist and satisfy 
the same basic relations'.

1) Heat, work, and internal energy remain universally and uniformly 
interconvértible.

2) The effects of irreversibility do not increase the maximum amount 
of work a body can do in a process for which 0 max , 0m in (or Tmax , Tmm) , C+, 
AE and AH are prescribed.

Then we can derive the traditional “ Second Laws” (C—P) and (H —B) 
as proved theorems.

I have used the Euler-Cauchy integral because with it the proof is not 
only rigorous but also accessible to students of engineering at the very begin
ning of their study of the calculus. Moreover, I do not see that greater gener
ality would serve any purpose in the applications for which classical thermo
dynamics is intended or that lesser generality would suffice to justify them.

6. C o m m ents on t h e  r e su l t s

K-Corners. The usual Clausius-Planck inequality is obtained by dif
ferentiating (C—P) : 0H ^  Q. At the corners of a Carnot cycle in classical 
thermodynamics H exists, but H and Q generally do not exist. Thus the 
differentiated inequality makes no sense at corners. The results given above, 
on the contrary, take care of difficulties of this kind. They apply easily to 
classical thermodynamics and to the theory of bodies with linear friction [4].

B-History. Clausius [5] obtained something like (C—P) but without 
reference to the time and with use of an undefined and unexplained inte

gration J  • • • dC. He arrived at his inequality through a process of divination

which suggested to him that an amount of heat C gained from a reservoir at 
the temperature 0 provided an “ equivalence value” C/0 which served as a 
lower bound for AH, and that in an adiabatic change H could not increase. 
In symbols,

C
AH ^  if 0 remains constant in the interval to which C and AH refer, 

0
AH ^  o if Q =  o in that interval.
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Adding inequalities of this kind shows that if a body gains amounts of heat 
Q  , C2 , • • •, Cn from n reservoirs at temperatures 0X, 02 , • • •,. 0n and is other
wise calorically insulated, then

AH ^
n

%

Hence, claimed Clausius, AH ^  dC/0 in general. (C—P) interprets Clausius’
J h

unexplained integration • • • dC as being j • • • Q dt. Conversely, all the
h

finite inequalities asserted by Clausius are immediate consequences of (C—P).
My treatment has points of similarity with Clausius’, but the differences 

are more important:

d) My basis is not physical divination but an explicit assumption 
about maximum possible work. (Thus my approach is in Carnot’s spirit.)

b) My analysis proceeds through mathematical statements and mathe
matical proofs.

c) My result applies to a body immersed in a heat bath, whether or 
not the temperature be the same at all points of the body.

The point where my posture is most likely to be criticized, however, is one it 
has in common with Clausius’: Both assume a priori that an entropy function 
defined at all times in some interval is associated with the body in question, 
and neither specifies constitutive relations by which that function may be 
determined.

Perhaps it is worth remarking that two of the results here, namely the 
main consequence in § 3 and the coarse lower bound at the end of § 4, do not 
require the function H to exist except at the beginning and the end of the 
interval of time over which Q and H are defined. Thus they cannot be litur- 
gically set aside by those who reject the concept of entropy except for processes 
which begin and end in some special circumstances.

<2-The two weakened First Laws. Let us return for a moment to the 
weakened First Laws which appear in the schemata written in § 1:

(I-) L +  AE ^ C ,

(1+) L +  AE ^  C .

We may interpret (I- ) as saying that if we put heat into a body we cannot 
get in return for it more than an equal amount of work and energy. Some 
heat may simply disappear. The second schema states that the Clausius-Planck 
inequality then delivers the same upper bound for L +  AE as we get in the 
theory of reversible processes. Some disappearance of heat, then, will certainly

14 — RENDICONTI 1980, voi. LXVIII, fase. 3.
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not give us more work and energy than a reversible Carnot cycle would produce. 
We may interpret (I+) as saying that when a body does work and gains 
energy, it cannot gain an amount of heat greater than the sum of those. 
Some work and energy may simply disappear. The first schema states that 
the upper bound for L +  AE according to the thermodynamics of reversible 
processes implies (C—P). Even the disappearance of some work and energy, 
provided that irreversibility do not increase the total quantity L -f AE, does 
not lessen the classical minimum increase of entropy.

The above remarks should not be read as claims that the First Law itself 
should be weakened in one or the other sense of inequality. We may inter
pret the first schema as telling us that if irreversibility leaves unaffected the 
upper bound for L +  AE, then our own possible failure to account for the 
entire work done and energy gained will not impair the classical lower bound 
for AH. We may interpret the second schema as asserting that if we adopt 
the classical lower bound for AH, then failure on our part to account for all 
the heat taken on by a body will not enable us to get any more work and 
energy from the heat we know we did put into the body. When expressed 
in this way, the first two schemata become obvious to anyone who knows the 
third schema.

D-Uniqueness. While in the classical thermodynamics of reversible
processes the entropy of a body is unique to within an additive constant, 
in more general recent theories there is no reason to expect any such unique
ness. For most purposes of application any function having the properties 
we associate with entropy is sufficient; it is neither necessary nor desirable 
that that function be unique. The theorems established in this note are 
invariant under replacement of the function H by any function H* such 
that AH* è  AH.
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