Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Rudy J. List

On subgroups of certain alternating groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 68 (1980), n.3, p. 173-178. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_68_3_173_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - On subgroups of certain alternating groups. Nota di Rudy J. List, presentata (*) dal Socio G. Zappa.

Riassunto. - Siano S_{n} e A_{n} rispettivamente il gruppo simmetrico e il gruppo alterno su n lettere, e sia G un sottogruppo di S_{n}. Per le seguenti coppie (G, n), se $\mathrm{G} \subseteq \mathrm{H} \subseteq \mathrm{S}_{n}$, si ha che $o \mathrm{H} \subseteq$ Aut G o $\mathrm{H} \supseteq \mathrm{A}_{n}$.
(i) G è il gruppo semplice eccezionale scoperto da Higman e Sims, e $n=100$;
(ii) G è come in (i), e $n=176$;
(iii) G è il gruppo semplice eccezionale scoperto da McLaughlin, e $n=275$;
(iv) G è il più piccolo gruppo semplice eccezionale scoperto da Conway, e $n=276$;
(v) G è $\mathrm{PSU}_{4}\left(3^{2}\right)$, e $n=112$.

I. INTRODUCTION

Let Ω denote a finite set, and let $S(\Omega)$ and $A(\Omega)$ be the symmetric and alternating groups on Ω respectively. A general approach to problems involving the question of maximality of a primitive permutation group G in $\mathrm{A}(\Omega)$ or $\mathrm{S}(\Omega)$ is to consider whether an overgroup H must be more highly transitive than G. The general idea is to examine the extent to which the orbits on $\Omega-U$ of the stabilizer in G of a subset U of Ω must join together when passing to the stabilizer of U in H . In this note we illustrate some aspects of this approach by examining the pairs (G, Ω) in the following cases:
a) G is the exceptional simple group discovered by Higman and Sims, and $|\Omega|=$ Ioo.
b) G is again the Higman-Sims group, and $|\Omega|=176$.
c) $\mathrm{G} \simeq \operatorname{PSU}_{4}\left(3^{2}\right)$, and $|\Omega|=112$.
d) G is the simple group discovered by McClaughlin , and $|\Omega|=275$.

In each case we prove that if $G \subseteq H \subseteq S(\Omega)$, either $H \subseteq$ Aut (G), or $H \supseteq A(\Omega)$. If G is the $M c C l a u g h l i n$ group $A u t(G) \simeq G .2$, and this is the stabilizer of a point in the smallest Conway group when it is represented on 276 points. Hence the smallest Conway group is a maximal subgroup of A_{276}.

If M is a permutation group on a set Λ, and if $\{\alpha, \beta, \cdots, \gamma\} \subseteq \Lambda$, the pointwise stabilizer of $\{\alpha, \beta, \cdots, \gamma\}$ is denoted by $\mathrm{M}_{\alpha \beta \cdots \gamma}$, and the setwise stabilizer is denoted by $\mathrm{M}_{(\alpha \beta \cdots \gamma)}$. $\mathrm{M} \cdot \mathrm{N}$ denotes an extension of M by N . When convenient an orbit of length m is denoted by O_{m}. If there are several orbits of length m, they may be denoted by $\mathrm{O}_{m}^{1}, \mathrm{O}_{m}^{2}, \cdots$ If $\Delta \subseteq \Lambda, \mathrm{M} \mid \Delta$
(*) Nella seduta dell'8 marzo 1980.
denotes the restriction of M to Δ. If m and n are integers, $m \mid n$ means m divides n. Thus $|H|||(G \mid \Delta)|$ means the order of H divides the order of G restricted to Δ.

2. In this section we prove a) , b) , c), d)

a) Higman and Sims construct a graph \mathscr{I} on 100 vertices, and G is a subgroup of index $2 \operatorname{in} \operatorname{Aut}(\mathscr{I})$. G is rank-3 on Ω and $G_{\alpha} \simeq M_{22}$, with subdegrees $\mathrm{I}, 22,77$. Hence if $\mathrm{H} \ddagger \mathrm{Aut}(\mathrm{G}), \mathrm{H}$ is 2 -transitive on $\Omega . \mathrm{O}_{22}$ and O_{77} correspond to the points and blocks of a Steiner system $\mathscr{S}=\mathscr{S}(3,6,22)$, and edges of \mathscr{I} may be described in terms of incidence in \mathscr{S}. A detailed description of the geometry of \mathscr{S} has been given in [II]. We use results and easy consequences from [II] without further reference to it. If $\beta \in O_{22}, \gamma \in O_{77}$ the orbits of $G_{\alpha \beta}, G_{\alpha \gamma}$ may be diagrammatically summarized as follows:

$$
\begin{aligned}
& \mathrm{G}_{\alpha \beta}: \alpha \beta, \frac{21}{21} \\
& \mathrm{G}_{\alpha \gamma}: \alpha \gamma, \frac{6}{16}, 16
\end{aligned}
$$

Here, for example, $\Omega-\{\alpha, \beta\}$ is the union of three orbits $\mathrm{O}_{21}^{1}, \mathrm{O}_{21}^{2}, \mathrm{O}_{56}$. Set $\mathrm{O}_{21}^{2} \cup \mathrm{O}_{56}=\mathrm{O}_{77}$.

The orbits of $H_{\alpha \beta}, H_{\alpha \gamma}$ are unions of orbits of $G_{\alpha \beta}, G_{\alpha \gamma}$ respectively, and since H is 2-transitive, the orbit diagrammes of $H_{\alpha \beta}$ and $H_{\alpha \gamma}$ are equivalent. This can only happen if H is 3 -transitive.

Take $\rho \in \mathrm{O}_{21}^{1}, \delta \in \mathrm{O}_{56}$. From the geometry of \mathscr{S} the following situation occurs:

$$
\begin{aligned}
& \mathrm{G}_{\alpha \beta p}, \beta \in \mathrm{O}_{22}, \rho \in \mathrm{O}_{21}^{1}: \alpha \beta \rho 5^{5} \\
& \mathrm{G}_{\alpha \beta \delta}, \beta \in \mathrm{O}_{22}, \delta \in \mathrm{O}_{56}: \alpha \beta \delta:_{6}^{6}
\end{aligned}
$$

By 3-transitivity the orbits of $\mathrm{H}_{\alpha \beta \rho}$ and $\mathrm{H}_{\alpha \beta \delta}$ are equivalent. Clearly the only possibilities are $\mathrm{O}_{16}, \mathrm{O}_{36}, \mathrm{O}_{45}$, or $\mathrm{O}_{45}, \mathrm{O}_{52}$. $(45,16)=(45,52)=\mathrm{I}$, so $\mathrm{H}_{\alpha \beta}$ is imprimitive by a theorem of Weiss [19; 17.5]. Considering the divisors of 98 this is clearly impossible. Therefore H is 4 -transitive and so $H \supseteq A(\Omega)$ [19; 13.9].
b) Ω may be taken to be the cosets of a $\mathrm{P} \Sigma \mathrm{U}_{3}\left(5^{2}\right) \subseteq \mathrm{G}$. Using the $P \Sigma U_{3}\left(5^{2}\right)$ located explicitly in G by Magliveras generators of G on Ω were constructed. Much information about G represented as a subgroup of $A(\Omega)$ is contained in [9], and we assemble some of it here.

G is 2-transitive on Ω. If $\alpha, \beta \in \Omega, \mathrm{G}_{\alpha \beta}$ has orbits $\{\alpha\},\{\beta\}$, and $\Delta(\beta)$, $\Gamma(\beta), \Sigma(\beta)$ of lengths $12,72,90$ respectively. $G_{\alpha \beta} \simeq$ Aut $\left(S_{6}\right)$. Following [9] $\Delta(\beta)=D \cup D^{*}$, where $D \cap D^{*}=\varnothing,|D|=\left|D^{*}\right|=6$. Denote $G_{(\{a, \beta\} \cup D)}$ by $\mathrm{K} . \mathrm{K} \simeq \mathrm{S}_{8}$, and the action of K restricted to $\Omega-(\{\alpha, \beta\} \cup \mathrm{D})$ is impri-
mitive of block length 6 , the blocks of imprimitivity being conjugates of D^{*} under K . For $\gamma \in \mathrm{D}$ the diagrammes of $\mathrm{G}_{\alpha \beta \gamma}$ and $G_{(\alpha \beta \gamma)}$ are respectively:

$G_{(\alpha \beta \gamma) /} / G_{\alpha \beta \gamma} \simeq S_{3}$ and acts on the orbits of length 6 and 30 .
Take $\sigma \neq \mathrm{I}, \sigma \in \mathrm{H}_{\alpha \beta}-\mathrm{G}_{\mathrm{\alpha} \beta}$. Some conjugate of σ restricts nontrivially to $\Delta(\beta)$, since $\Omega-(\{\alpha, \beta\} \cup D)$ is union of conjugates of D^{*}. Aut $\left(\mathrm{S}_{6}\right)$ is a maximal subgroup of M_{12}. Thus if $\Delta(\beta)$ is an orbit of $\mathrm{H}_{\alpha \beta}, \mathrm{H}_{\alpha \beta} \mid \Delta(\beta)$ contains M_{12}, so $\mathrm{H}_{\alpha \beta}$ has an orbit $\mathrm{O}_{i}, i>12, i \mid 11.12$ [19; 17.7]. This is impossible given the subdegrees of $\mathrm{G}_{\alpha \beta}$. Thus if H is not 3 -transitive, $\mathrm{H}_{\alpha \beta} \mid \Omega-\{\alpha, \beta\}$ has orbits (i) $\Delta(\beta) \cup \Gamma(\beta), \Sigma(\beta)$ or (ii) $\Delta(\beta) \cup \Sigma(\beta), \Gamma(\beta)$. In case (i) take $\rho \in \Delta(\beta), \gamma \in \Gamma(\beta)$. Then $|(\Delta(\rho) \cup \Gamma(\rho)) \cap \Sigma(\beta)|=|(\Delta(\gamma) \cup \Gamma(\gamma)) \cap \Sigma(\beta)|$. Taking $\beta=2, \rho=14, \gamma=13$ and consulting the appendix the cardinalities are 50 and 30 respectively.

In case (ii) $\mathrm{H} \mid \mathrm{O}_{174}$ has orbits $\mathrm{O}_{72}, \mathrm{O}_{102}$, and an element of order 17 when restricted to O_{72} has $4+k .17$ fixed points, $\mathrm{o} \leq k \leq 3$. Clearly $\mathrm{H}_{\alpha \beta} \mid \mathrm{O}_{72}$ is primitive. Using the fact that $\mathrm{G}_{\alpha \beta}$ contains elements of order 5 fixing two points of O_{72} and arguing as in a) $\mathrm{H}_{\mathrm{u} \mathrm{\beta}} \mid \mathrm{O}_{72}$ is 2-transitive. But 71 is prime. Therefore $\mathrm{H} \supseteq \mathrm{A}(\Omega)$ [19; 13.10].

Hence H is 3 -transitive. From the diagrammes of $\mathrm{G}_{\alpha \beta \gamma}, \mathrm{G}_{(\alpha \beta \gamma)}$ above, either $H_{\alpha \beta} \mid \Omega-\{\alpha, \beta\}$ is primitive or imprimitive with block length 6 and image of imprimitivity in S_{29}. $\mathrm{G}_{\alpha \beta \gamma} \supseteq \mathrm{S}_{5}$, so $\mathrm{H}_{\alpha \beta}$ is not solvable. Therefore $\mathrm{H}_{\alpha \beta}$ acting on the blocks contains A_{29} [I]. Hence a Sylow 17 -subgroup of H fixes 74 points, and $\mathrm{H} \supseteq \mathrm{A}(\Omega)[19 ;$ I 3.10$]$. If $H_{\alpha \beta} \mid \Omega-\{\alpha, \beta\}$ is primitive $H_{\alpha \beta \gamma}, \gamma \in \mathrm{D}$, has no O_{5} by [19; 17.7]. The possibilities for orbits of $\mathrm{H}_{(\mathrm{a} \beta \gamma)}$ obtained by joining O_{5} to other orbits of $\mathrm{G}_{(\alpha \mathrm{\beta r})}$ are $\mathrm{O}_{i}, i=23,65,95,83,113, \mathrm{I} 55, \mathrm{I} 73$. By the prime factorization of these i, if O_{i} is an orbit of $\mathrm{H}_{(\alpha, \beta \gamma)}$ it must also be one of $\mathrm{H}_{\alpha \beta \gamma}$. Hence $i=173$ [19; 17.5], and $\mathrm{H} \supseteq \mathrm{A}(\Omega)[19 ; 13.9]$.
c) Ω may be taken to be the set of maximal isotropic subspaces of $\mathrm{V}_{4}\left(3^{2}\right)$ with a unitary geometry. This geometry is classical and we assume familiarity with it. If $\alpha \in \Omega$, let $\Delta(\alpha)$ and $\Gamma(\alpha)$ of lengths 30 and 8I respectively be the nontrivial orbits of G_{α}. Denote the set of blocks of $\mathrm{G}_{\mathrm{a}} \mid \Delta(\alpha)$ by $B(\alpha)$ Take $a_{1} \in \Delta(\alpha)$ and let $\left\{a_{2}, a_{3}\right\}=\Delta(\alpha) \cap \Delta\left(a_{1}\right)$. Set $\{i, j, k\}=\{\mathrm{I}, 2,3\}$. Then $\Delta\left(a_{i}\right)=\left\{\alpha, a_{k}, a_{j}\right\} \cup \mathrm{O}_{27}^{i}$, where $\mathrm{O}_{27}^{i}=\Gamma(\alpha) \cap \Delta\left(a_{i}\right) ; \mathrm{O}_{27}^{i} \cap \mathrm{O}_{27}^{j}=\varnothing$, $i \neq j ; \Delta\left(a_{i}\right) \cap \Delta\left(a_{j}\right)=\left\{\alpha, a_{k}\right\} ; \mathrm{O}_{27}^{t}, t=\mathrm{I}, 2,3$ are the orbits of $\mathrm{K}_{\alpha a_{1} a_{2} a_{3} \mid \Gamma(\alpha)}$ where K is the kernel of G_{α} acting on $\mathrm{B}(\alpha)$. The orbits of a Sylow 3-subgroup P of $\mathrm{G}_{\alpha a_{1} a_{2} a_{3}}$ are $\{\alpha\},\left\{a_{i}\right\}, i=1,2,3, \Delta(\alpha)-\left\{a_{1}, a_{2}, a_{3}\right\}, \mathrm{O}_{27}^{i}, i=\mathrm{I}, 2,3$.

Aut $(G) / G \simeq D_{4}$, and $\operatorname{Aut}(G)_{\alpha} \simeq \mathrm{K} .\left(\mathrm{C}_{2} \times \mathrm{PDL}_{2}(9)\right)$. The central involution in $\mathrm{C}_{2} \times \mathrm{PCL}_{2}(9)$ inverts every element of K .

Since A_{6} cannot be represented reducibly as a subgroup of GL_{4} (3), $\mathrm{C}_{\mathrm{GL}_{4}(3)}\left(\mathrm{A}_{6}\right)=\mathrm{Z}\left(\mathrm{GL}_{4}(3)\right)=\mathrm{C}_{2}$. Also maximal elementary abelian 2-groups of
GL_{4} (3) are of order 16, and A_{6} can be represented in $\mathrm{GL}_{4}(2)$ in just one way; hence if L is a 2 -group and $L . A_{6} \subseteq \mathrm{GL}_{1}(3), \mathrm{L} \simeq \mathrm{C}_{2}$.

Now suppose that H is rank-3. Then $H_{a} \mid \Delta(\alpha)$ is faithful, since $G_{a} \mid \Gamma(\alpha)$ is primitive. Suppose $\mathrm{H}_{\alpha} \mid \Delta(\alpha)$ is imprimitive, and let J be the kernel of imprimitivity. $\mathrm{K} \mid \Gamma(\alpha)$ is self centralizing in $\mathrm{S}(\Gamma(\alpha))$, so $\mathrm{J}|\Gamma(\alpha)=\mathrm{K}| \Gamma(\alpha)$. It follows that if σ is of order 3 in $\mathrm{J}-\mathrm{K}, \sigma(\Delta(b)) \neq \Delta(b)$ while $\sigma(b)=b$, for some $b \in \Gamma(\alpha)$. This is impossible. By the remarks concerning embedding A_{6} in $\mathrm{GL}_{4}(3)$ and $\mathrm{GL}_{4}(2)$ it now follows that $\mathrm{J}=\mathrm{K}$ or else $\mathrm{J}=\mathrm{K} . \mathrm{C}_{2}$, and C_{2} inverts each element of K. Hence H_{α} represented on $B(\alpha)$ contains $A(B(\alpha))=A_{10}$. But $A_{10} \nsubseteq G L_{4}(3)$. This is impossible $\left(K \simeq V_{4}(3)\right)$. Suppose, therefore, that $\mathrm{H}_{\alpha} \mid \Delta(\alpha)$ is primitive, so that $\mathrm{H}_{\alpha} \mid \Delta(\alpha)$ and $\mathrm{H}_{\alpha} \mid \Gamma(\alpha)$ are both faithful. Considering the orbits of P it follows that $\mathrm{H}_{\alpha} \mid \Delta(\alpha)$ is 2 -transitive [19; 13.1]. An element of order 29 fixes at least 25 points of Ω. Therefore $\mathrm{H} \supseteq \mathrm{A}(\Omega)$ [19; 13.10]. Therefore H is 2-transitive, and $\mathrm{H}_{\alpha} \mid \Omega-\{\alpha\}$ is primitive, since $I I=3.37$ and $G_{\alpha} \mid \Gamma(\alpha)$ is primitive. Therefore H is 3-transitive [13]. If $\mathrm{H}_{\alpha \beta} \mid \Omega-\{\alpha, \beta\}$ is imprimitive, the block containing $\gamma, \gamma \neq \alpha, \beta$, consists of γ and a union of orbits of P , i.e., blocks must have length 2 or 55 . For $\beta \in \Gamma(\alpha), \mathrm{G}_{\alpha \beta} \simeq \mathrm{A}_{6}$ has orbit diagramme $\left.\alpha \beta\right|^{10}$ 20 ${ }^{20}$ by [4]. Clearly 55 is impossible. Since $A_{6} \nsubseteq S_{5}$, so is 2. Hence $H_{\alpha \beta} \mid \Omega-\{\alpha, \beta\}$ is primitive. Arguing now as in a) and b) using theorems of Cameron and Weiss [19; 17.5], H is 4-transitive and therefore $\mathrm{H} \supseteq \mathrm{A}(\Omega)$ [19; 13.9].
d) For $x \in \Omega, \mathrm{G}_{x} \simeq \mathrm{PSU}_{4}\left(3^{2}\right)$ with suborbits $\Delta(x), \Gamma(x)$ of lengths 112, 162 respectively. Sylow 3-subgroups of G fix two points and have nontrivial orbits $\mathrm{O}_{3}, \mathrm{O}_{27}, \mathrm{O}_{81}^{j}, j=\mathrm{I}, 2,3$. If $y \in \Gamma(x), \mathrm{G}_{x y} \supseteq \mathrm{~A}_{8}$ with orbits $\mathrm{O}_{10}, \mathrm{O}_{j}^{1}, \mathrm{O}_{j}^{2}, j=2 \mathrm{o}, 3 \mathrm{O}, 36,45$ [4].

Suppose H is rank-3. By c) $[\mathrm{H}: \mathrm{G}] \mid 8$, and $\mathrm{G} \unlhd \mathrm{H}$. G contains one class of $\mathrm{PSU}_{4}\left(3^{2}\right)$ and $\mathrm{PSU}_{3}\left(5^{2}\right)$ [4], and each of these has trivial centralizer in S_{275}. Hence H / G is faithfully represented in $\operatorname{Aut}(\mathrm{J}) / \mathrm{J} \simeq \mathrm{C}_{6}, \mathrm{D}_{4}$, for $\mathrm{J} \simeq \mathrm{PSU}_{4}\left(3^{2}\right), \mathrm{PSU}_{3}\left(5^{2}\right)$ respectively. Hence $[\mathrm{H}: \mathrm{G}] \mid 2$ and $\mathrm{H} \subseteq \mathrm{Aut}(\mathrm{G})$.

Hence $\mathrm{H} \not \ddagger$ Aut (G), and so H is 2 -transitive. $274=2.137$ and H_{x} is primitive. Therefore H is 3 -transitive [19; 3I.I]. If $H \nsubseteq$ Aut (G), then $\mathrm{H} \cap \mathrm{A}(\Omega) \neq \mathrm{Aut}(\mathrm{G})$, so $\mathrm{H} \cap \mathrm{A}(\Omega)$ is 3 -transitive, and so we may assume that $\mathrm{H} \subseteq \mathrm{A}(\Omega)$. Then if $|\langle\sigma\rangle|=137$ and $\mathrm{H} \neq \mathrm{A}(\Omega)$, σ fixes one point and is self centralizing. If ρ normalizes but does not centralize σ, then, $|\langle p\rangle| \mathrm{I} 36, \rho$ fixes exactly 3 points a, b, c of Ω and acts semiregularly on $\Omega-\{a, b, c\}=\Omega^{\prime}$. Further $\left|\mathrm{N}_{\mathrm{H}}(\sigma)\right| \neq 2 . \mathrm{I} 37$ [io].

Let S be a Sylow 3-subgroup of $\mathrm{G}_{x y}$ such that $\{a, b, c\}=\mathrm{O}_{3}$. By 3-transitivity there is an $\mathrm{A}_{6} \subseteq \mathrm{H}_{a b c}$ with orbits $\mathrm{O}_{16}, \mathrm{O}_{j}^{1}, \mathrm{O}_{j}^{2}, j=20,30,36,45$. Set $\mathrm{H}_{(a b c)}=\mathrm{M} . \mathrm{M} \supseteq\left\langle\mathrm{A}_{6}, \mathrm{~S}, \mathrm{p}\right\rangle$, where ρ has order 4 or 17 . From the orbits of A_{6} and S and the semiregularity of ρ on Ω^{\prime} it follows that M is transitive on Ω^{\prime}. If $M \mid \Omega^{\prime}$ is imprimitive, the orbits of S force block length 2. Then O_{10} is a union of 5 blocks, whereas $A_{6} \nsubseteq S_{5}$. Therefore $M \mid \Omega^{\prime}$ is primitive. Since
$\mathrm{H}_{a b c} \triangleleft \mathrm{M}, \mathrm{H}_{a b e}$ is transitive on $\Omega^{\prime}[19 ; 8.8]$, so H is 4 -transitive on Ω. Consider $\mathrm{M}_{x}, x \in \Omega^{\prime}$. By 4-transitivity, there is an element of order 5 fixing $\{a, b, c, x, y\}$. Hence orbits of $\mathrm{M}_{x} \mid \Omega^{\prime}-\{x\}$ are unions of $\{x\}, \mathrm{O}_{27}, \mathrm{O}_{81}^{j}$, $j=1,2,3$, and exactly one has length congruent to $1(\bmod 5)$, all others being congruent to $0(\bmod 5)$. The possibilities are: 1,$270 ; 190,81$. These both imply that $\mathrm{H} \supseteq \mathrm{A}(\Omega)$ by arguing as in $a), b$), c), and using the fact that A_{27} has no proper subgroup of index dividing 190 .

APPENDIX

I. Generators of the Higman-Sims group as a subgroup of A_{176}.

```
a=(1)(i,i+1, i+2,i+3,i+4,i+5,i+6), 2\leqi\leq 176, i=2(mod 7)
b=(1,2)(3,9)(4,16) (5,23) (6,30) (7,37) (8,44) (10,25) (11,51) (12,58) (13,65) (14) (15,72)
    (17,49) (18,79) (19,45) (20,86) (21,93) (22,100) (24,107) (26,108) (27,32) (28,114)
    (29,121) (31,87) (33,128) (34,77) (35,46) (36,48) (38) (39,135) (40,129) (41,75)
    (42,54) (43,116) (47) (50,132) (52,59) (53) (55) (56,97) (57,130) (60) (61,142) (62,149)
    (63,127) (64,92) (66,88) (67,133) (68,156) (69,118) (70,113) (71,163) (73,148)
    (74,165) (76,81) (78,164) (80,159) (82,106) (83) (84,167) (85,104) (89) (90,168)
    (91,139) (94,124) (95,105) (96,119) (98) (99,170) (101,162) (102,117) (103,141)
    (109) (110,160) (III,140) (112,157) (115,154) (120) (122,147) (123,137) (125,150)
    (126,175) (13I,144) (134,17I) (136,158) (138) (143,161) (145,176) (146,169) (151)
    (152,172) (153,155) (166) (173) (174).
```

II. Orbits of $\mathrm{G}_{1,2} ;|\Omega|=176$.
$\mathrm{A}=\{1\}, \mathrm{B}=\{2\}, \mathrm{C}=\{14,35,38,43,46,83,102, \mathrm{II} 6, \mathrm{II} 7,136,15 \mathrm{I}, \mathrm{I} 58\}$,
$\mathrm{D}=\{3,4,7,8,9,12,15,16,19,2 \mathrm{I}, 24,26,28,29,3 \mathrm{I}, 34,37,39,40,4 \mathrm{I}, 44,45,52$, $56,58,62,63,67,69,71,72,75,76,77,81,84,85,87,91,93,94,97$, Іог, Іо4, 107, 108, 112, 114, i18, 121, 124, 127, 129, 131, 133, 134, 135, 139, 144, 149, 152, 153, 155, 157, 162, 163, 167, 171, 172, 176\},
$E=\Omega-(A \cup B \cup C \cup D)$.

References

[1] K. I.Appel and E.T. Parker (1967) - On unsolvable groups of degree $p=4 q+1, p$ and q primes, "Can. J. Math.", 19, 538-589.
[2] P. J. Cameron (1972) - Permutation groups with multiply transitive suborbits, «Proc. London Math. Soc.», (3) 25, 427-440.
[3] P. Dembowski (1968) - Finite Geometries, Springer-Verlag.
[4] Larry Finkelstein (1973) - The Maximal Subgroups of Conway's Group. C_{3} and McLaughlin's Group, " J. Algebra», 25, 58-89.
[5] M. D. Hestenes and D. G. Higman (1971) - Rank 3 groups and strongly regular graphs, "SIAM AMS Proc.》, IV, 141-159.
[6] D. G. Higman (1964) - Finite permutation groups of rank 3, "Math. Z. 》, 86, 145-156.
[7] D. G. Higman (i966) - Primitive rank 3 groups with a prime subdegree, "Math. Z. घ, 9I, 70-86.
[8] D. G. Higman (1970) - A survey of some questions and results about rank 3 permutation groups, "Actes Congres Intern. Math. », I, 361-365.
[9] Graham Higman (1967) - On the simple group of D. G. Higman and C. C. Sims, «Illinois J. Maths. », 13, 74-80.
[10] N. Iто (1962) - On transitive simple permutation groups of degree $2 p, «$ Math. Z.», 78 , 453-468.
[11] Heinz LÜneburg - Über die Gruppen von Mathieu, "J. Algebra", Io, 194-210.
[12] S. S. Magliveras (1970) - The Subgroup Structure of the Higman-Sims Simple Group, Thesis, University of Birgmingham.
[13] P. M. Neumann (1969) - Primitive permutation groups of degree 3 p, preprint.
[14] Cheryl E. Praeger (1973)-On the Sylow Subgroups of Transitive Permutation Groups, «Math. Z. ", I34, 179-180.
[15] Cheryl. E. Praeger (1974) - On the Sylow Subgroups of a Doubly Transitive Permutation Group, "Math. Z.", 137, 155-171.
[16] Cheryl E. Praeger (1975) - On the Sylow Subgroups of a Doubly Transitive Permutation Group II, "Math. Z.", I43, 131-143.
[17] Cheryl E. Praeger (1975) - On the Sylow Subgroups of a Doubly Transitive Permutation Group III, "Bulletin Aust. Math. Soc.», (2) 13, こ11-240.
[18] M. S. Smith (1975) - On Rank 3 Permutation Groups, " J. Algebra ", 33, 22-42.
[19] H. Wielandt (1964) - Finite Permutation Groups, "Academic Press».
[20] Donald G. Higman and Charles C. Sims (1968) - A Simple Group of Order 44, 552,000, «Math. Z.", 105, IIO-II3.

