ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Valter Roselli

Moduli fortemente quasi iniettivi e SISI anelli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.2, p. 99–105. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_2_99_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



Algebra. — Moduli fortemente quasi iniettivi e SISI anelli. Nota di Valter Roselli, presentata (*) dal Corrisp. I. Barsotti.

SUMMARY. — We characterize all modules strongly quasi-injective with commutative endomorphism ring over a given commutative ring R and study in particular the case in which R is a SISI ring.

INTRODUZIONE

Sia R un anello commutativo. La nozione di R-modulo fortemente quasi iniettivo con anello degli endomorfismi commutativo (in breve f.q.i.c.) è stata introdotta da C. Menini e A. Orsatti in [2] in relazione allo studio di una dualità Δ_k di tipo Pontryagin tra le categorie degli R-moduli K-discreti e K-compatti, dove K è l'R-modulo che funge da codominio dei caratteri ed R è il completamento di Hausdorff di R nella K-topologia.

Nel presente lavoro si determinano tutti i moduli f.q.i.c. sopra un dato anello commutativo R seguendo un suggerimento di L. Fuchs. Il risultato principale è il seguente:

Il cogeneratore minimale U di Mod-R contiene un unico sottomodulo f.q.i.c. \hat{K} tale che gli R-moduli f.q.i.c. sono tutti e soli i sottomoduli di \hat{K} . Inoltre $\hat{K}=U$ se e solo se R è un SISI anello. Si dimostra quindi che se K è un R-modulo f.q.i.c. la categoria $\mathfrak{D}_{\mathbf{R}}(K)$ dei moduli K-discreti coincide con Mod-R se e solo se R è un SISI anello completo nella K-topologia e K è il cogeneratore minimale U di Mod-R. In tal caso R ha solo un numero finito di ideali massimali e possiede una dualità di Morita con se stesso subordinata dalla dualità Δ_k .

I risultati del § 2 sono stati ottenuti dall'autore nella tesi di laurea.

§ 1. PREMESSE

I.I. Siano R un anello commutativo con $I \neq 0$ e K un R-modulo. Dotiamo R della K-topologia assumendo come base di intorni di zero gli annullatori in R dei sottoinsiemi finiti di K. Denotiamo con \mathfrak{F} il filtro degli ideali aperti di R, con \mathfrak{R} il completamento di Hausdorff di R e con \mathfrak{F} il filtro degli ideali aperti di \mathfrak{R} . K è in modo naturale un \mathfrak{R} -modulo fedele e la K-topologia di \mathfrak{R} coincide con la topologia del completamento ([2], Proposizione I.I).

^(*) Nella seduta del 9 febbraio 1980.

Se M è un R-modulo indichiamo con $t_{\mathfrak{F}}(M)$ il sottomodulo di \mathfrak{F} -torsione di M, cioè

$$t_{\mathfrak{F}}(\mathbf{M}) = \{x \in \mathbf{M} : \mathrm{Ann}_{\mathbf{R}}(x) \in \mathfrak{F}\}.$$

1.2. Indichiamo con LTR la categoria dei moduli linearmente topologizzati e di Hausdorff sopra l'anello R dotato della K-topologia. Sia $M \in Mod-R$ $(M \in LTR)$. Un carattere di M è un morfismo (morfismo continuo) di M in K (dove K ha la topologia discreta).

Denotiamo con $\mathfrak{D}_{\mathbf{R}}(K)$ la sottocategoria di Mod- \mathbf{R} formata dai moduli K-discreti, cioè dai moduli algebricamente isomorfi a sottomoduli di prodotti diretti di copie di K e con $\mathscr{C}_{\mathbf{R}}(K)$ la sottocategoria di $LT\mathbf{R}$ formata dai moduli K-compatti, cioè dai moduli che sono topologicamente isomorfi a sottomoduli chiusi di prodotti topologici di copie discrete di K.

Sia $M \in Mod-R$. Il modulo dei caratteri di M è il modulo $M^* = Hom_R$ (M, K) munito della topologia della convergenza semplice. Evidentemente $M^* \in \mathscr{C}_R$ (K).

Se $M \in LTR$ il modulo dei caratteri M^* di M è il modulo astratto formato dai morfismi continui di M in K. Evidentemente $M^* \in \mathfrak{D}_R(K)$. In entrambi i casi M^* è detto anche il duale di M.

$$\Delta: \mathfrak{D}_{\mathbf{R}}(K) \to \mathscr{C}_{\mathbf{R}}(K)$$

il funtore controvariante che associa ad ogni $M \in \mathfrak{D}_{\mathbf{R}}$ (K) il suo duale e ad ogni morfismo il suo trasposto.

Si dice che Δ è una buona dualità se ogni modulo K-discreto oppure K-compatto è canonicamente isomorfo al proprio biduale e inoltre la categoria $\mathfrak{C}_{\mathbf{R}}(K)$ ha la proprietà di estensione dei caratteri, ossia ogni carattere di un sottomodulo topologico di un modulo M di $\mathfrak{C}_{\mathbf{R}}(K)$ si estende ad un carattere di M. C. Menini e A. Orsatti hanno provato ([2], Teorema 3.6) che Δ è una buona dualità se e solo se K è un R-modulo fortemente quasi iniettivo con anello degli endomorfismi commutativo (in breve K è un R-modulo f.q.i.c.).

Ricordiamo che K si dice f.q.i. se per ogni sottomodulo B di K e $x \in K \setminus B$, ogni morfismo di B in K si estende ad un endomorfismo di K diverso da zero in x.

§ 2. COSTRUZIONE DI MODULI F.Q.I.C. E SISI ANELLI

2.1. Siano R un anello commutativo con 1 \neq 0 e Ω l'insieme degli ideali massimali di R. Sia $\{S_{\mathfrak{M}}\}_{\mathfrak{M}\in\Omega}$ un sistema di rappresentanti delle classi di isomorfismo degli R-moduli semplici, dove per ogni $\mathfrak{M}\in\Omega$ $S_{\mathfrak{M}}\cong R/\mathfrak{M}$, e posto

$$S=\underset{\mathfrak{M}\in\Omega}{\oplus}S_{\mathfrak{M}}$$

indichiamo con E(S) l'inviluppo iniettivo di S.

Sia ora $\mathfrak R$ la famiglia dei sottomoduli di E(S) contenenti S, pienamente invarianti in E(S) e il cui anello degli endomorfismi è commutativo. $\mathfrak R$ contiene S ed è filtrante crescente, cioè se K_1 , $K_2 \in \mathfrak R$ allora anche $K_1 + K_2 \in \mathfrak R$. Ne segue che

 $\hat{K} = \bigcup_{K \in \Re} K$

è un sottomodulo di E(S) che, come si verifica facilmente, è in R.

Si osservi inoltre che se $K \in \mathbb{R}$, allora K è f.q.i.c. Infatti ogni ideale massimale di R è aperto nella K-topologia di R e K è quasi-iniettivo essendo pienamente invariante nel proprio inviluppo iniettivo E (S). Quindi K è f.q.i. per la Proposizione 3.2 di [2].

2.2. Ci proponiamo adesso di dimostrare che ogni R-modulo f.q.i.c. è isomorfo ad un sottomodulo di K.

Sia dunque H un R-modulo f.q.i.c. Indichiamo con $\mathfrak F$ il filtro degli ideali aperti di R nella H-topologia, con $S_{\mathfrak F}=\mathop{\oplus}\limits_{\mathfrak M\in\Omega_{\mathfrak F}}S_{\mathfrak M}$ dove $\Omega_{\mathfrak F}$ è l'insieme degli ideali massimali di $\mathfrak F$.

Osserviamo anzitutto che se $\mathfrak{M} \notin \Omega_{\mathfrak{F}}$ allora $t_{\mathfrak{F}}(E(S_{\mathfrak{M}})) = o$ perchè altrimenti $S_{\mathfrak{M}} \leq t_{\mathfrak{F}}(E(S_{\mathfrak{M}}))$, e $\mathfrak{M} \in \Omega_{\mathfrak{F}}$.

PROPOSIZIONE. – Sia H un R-modulo f.q.i.c. Allora H è isomorfo a $t_{\mathfrak{F}}(\hat{K})$ che a sua volta coincide con $t_{\mathfrak{F}}(E(S))$.

 $\begin{array}{lll} \textit{Dimostrazione.} & - \text{ Identifichiamo } H & \operatorname{con} \underset{\mathfrak{M} \in \Omega_{\mathfrak{F}}}{\oplus} t_{\mathfrak{F}} \left(E \left(R / \mathfrak{M} \right) \right) & \left([\mathbf{2}], \text{ Teorema 4.4} \right) & \text{e quest'ultimo lo identifichiamo con il sottomodulo} \underset{\mathfrak{M} \in \Omega_{\mathfrak{F}}}{\oplus} t_{\mathfrak{F}} \left(E \left(S_{\mathfrak{M}} \right) \right) \\ \operatorname{di} \underset{\mathfrak{M} \in \Omega}{\oplus} E \left(S_{\mathfrak{M}} \right), & \text{che a sua volta è un sottomodulo di } E \left(S \right). \end{array}$

Consideriamo le inclusioni

$$S \leq \underset{\mathfrak{M} \, \in \, \Omega}{\oplus} E \left(S_{\mathfrak{M}} \right) \leq E \left(S \right) \leq \prod_{\mathfrak{M} \, \in \, \Omega} E \left(S_{\mathfrak{M}} \right).$$

Sia $x \in t_{\mathfrak{F}}(E(S))$, $x = (x_{\mathfrak{M}})_{\mathfrak{M} \in \Omega}$, dove per ogni $\mathfrak{M} \in \Omega$, $x_{\mathfrak{M}} \in E(S_{\mathfrak{M}})$. $I = Ann_R \cdot (x) \in \mathfrak{F}$ e $Ix_{\mathfrak{M}} = o$ per ogni $\mathfrak{M} \in \Omega$. Per quanto osservato se $\mathfrak{M} \notin \Omega_{\mathfrak{F}}$ è $x_{\mathfrak{M}} = o$. Se invece $\mathfrak{M} \in \Omega_{\mathfrak{F}}$ allora $x_{\mathfrak{M}} \in t_{\mathfrak{F}}(E(S_{\mathfrak{M}}))$ e se $x_{\mathfrak{M}} \neq o$ risulta

$$I \leq Ann_R(x_{\mathfrak{M}}) \leq \mathfrak{M}$$
.

Poichè I è contenuto solo in un numero finito di ideali massimali appartenenti a \mathfrak{F} ([2], Teorema 4.4) $x_{\mathfrak{M}}=\mathbf{0}$ per quasi tutti gli $\mathfrak{M}\in\Omega_{\mathfrak{F}}$. Quindi $x\in\bigoplus_{\mathfrak{M}\in\Omega_{\mathfrak{F}}}t_{\mathfrak{F}}\left(\mathrm{E}\left(\mathrm{S}_{\mathfrak{M}}\right)\right)$ e $t_{\mathfrak{F}}\left(\mathrm{E}\left(\mathrm{S}\right)\right)\leq\mathrm{H}$.

Poniamo adesso $S'=\underset{\mathfrak{M}\notin\Omega_{\mathfrak{F}}}{\oplus}S_{\mathfrak{M}}$ e $H'=S'+H=S'\oplus H.$ Risulta

$$\operatorname{End}_{R}(H') \cong \prod_{\mathfrak{M} \notin \Omega_{\mathfrak{F}}} \frac{R}{\mathfrak{M}} \oplus \operatorname{End}_{R}(H)$$

poichè

 $\begin{aligned} \operatorname{Hom}_{\mathbb{R}}\left(S_{\mathfrak{M}_{1}}\,,\,t_{\mathfrak{F}}\left(\operatorname{E}\left(S_{\mathfrak{M}_{2}}\right)\right) = o & \text{ e } & \operatorname{Hom}_{\mathbb{R}}\left(t_{\mathfrak{F}}\left(\operatorname{E}\left(S_{\mathfrak{M}_{2}}\right)\right)\,,\,S_{\mathfrak{M}_{1}}\right) = o \\ \operatorname{se}\,\,\mathfrak{M}_{1} \notin \Omega_{\mathfrak{F}} & \text{ e } & \mathfrak{M}_{2} \in \Omega_{\mathfrak{F}}\,. \end{aligned}$

Osserviamo poi che H è pienamente invariante in E(S) perchè se $f \in \operatorname{End}_{\mathbb{R}}(\operatorname{E}(\operatorname{S}))$, $f(\operatorname{H}) \leq t_{\mathfrak{F}}(\operatorname{E}(\operatorname{S}_{\mathfrak{F}})) = \operatorname{H}$ ([2], Theorema 4.4).

Essendo anche S' pienamente invariante in E(S), si ha che $H' \in \Re$ e quindi $H \leq H' \leq \hat{K}$ da cui $t_{\mathfrak{F}}(H) = H \leq t_{\mathfrak{F}}(\hat{K})$.

In definitiva abbiamo provato le seguenti inclusioni

$$t_{\mathfrak{F}}(\hat{K}) \leq t_{\mathfrak{F}}(E(S)) \leq H \leq t_{\mathfrak{F}}(\hat{K}).$$

- 2.3. TEOREMA. Sia R un anello commutativo con $1 \neq 0$. Indichiamo con S la somma diretta di un sistema di rappresentanti delle classi di isomorfismo degli R-moduli semplici, con E(S) l'inviluppo iniettivo di S. Allora E(S) contiene un sottomodulo \hat{K} f.q.i.c. contenente S tale che se H è un R-modulo f.q.i.c. e \mathfrak{F} è il filtro degli ideali aperti nella H-topologia di R, H è isomorfo a $t_{\mathfrak{F}}(\hat{K})$. Inoltre ogni sottomodulo di \hat{K} è f.q.i.c.
- 2.4. Sia R un anello commutativo con 1 \neq 0. Per il teorema di struttura dei moduli f.q.i.c. ([2], Teorema 4.4] è $\hat{K} \leq \underset{\mathfrak{M} \in \Omega}{\oplus} E(S_{\mathfrak{M}})$. Ci proponiamo di determinare gli anelli R per i quali risulta $\hat{K} = \underset{\mathfrak{M} \in \Omega}{\oplus} E(S_{\mathfrak{M}})$.

A tal fine ricordiamo che un anello R si dice un SISI anello se per ogni $\mathfrak{M} \in \Omega$, ogni sottomodulo di E $(S_{\mathfrak{M}})$ è pienamente invariante, ossia se per ogni $x \in E(S_{\mathfrak{M}})$ e ogni $f \in \operatorname{End}_R(E(S_{\mathfrak{M}}))$ esiste $r \in R$ (dipendente da $x \in f$) tale che f(x) = rx.

Di conseguenza $\operatorname{End}_R(\operatorname{E}(S_{\mathfrak{M}}))$ è commutativo per ogni $\mathfrak{M} \in \Omega$. Ricordiamo inoltre che un SISI anello è un *H-anello* ([4], Lemma 2.3), cioè per ogni coppia S_1 , S_2 di moduli semplici non isomorfi si ha

$$Hom_{R}\left(E\left(S_{1}\right)\text{, }E\left(S_{2}\right)\right)=o$$
 .

Ne consegue che se R è un SISI anello

$$\operatorname{End}_{R}\left(\underset{\mathfrak{M}\in\Omega}{\oplus}\operatorname{E}\left(S_{\mathfrak{M}}\right)\right)\cong\prod_{\mathfrak{M}\in\Omega}\operatorname{End}_{R}\left(\operatorname{E}\left(S_{\mathfrak{M}}\right)\right)$$

è commutativo.

2.5. TEOREMA. - Sia R un anello commutativo e si ponga

$$U=\underset{\mathfrak{M}\,\in\,\Omega}{\oplus}E\left(S_{\mathfrak{M}}\right) .$$

Le seguenti affermazioni sono equivalenti.

- (a) R è un SISI anello.
- (b) L'anello degli endomorfismi di U è commutativo.
- (c) U è f.q.i.c.
- (d) $U = \hat{K}$.

Dimostrazione:

- (a) ⇒ (b) Risulta dalle considerazioni precedenti.
- (b) \Rightarrow (c) Sia $\mathfrak F$ il filtro degli ideali aperti di R nella U-topologia e $\Omega_{\mathfrak F}$ l'insieme degli ideali massimali di $\mathfrak F$. Evidentemente $\Omega_{\mathfrak F}=\Omega$ attesa la struttura di U e inoltre $t_{\mathfrak F}(E(S_{\mathfrak M}))=E(S_{\mathfrak M})$ per ogni $\mathfrak M\in\Omega$. Allora, essendo $\operatorname{End}_R(U)$ commutativo, U è f.q.i. per il Teorema 4.4 di [2].
- (c) \Rightarrow (a) Per ogni $\mathfrak{M} \in \Omega$, $E(S_{\mathfrak{M}})$ è f.q.i.c. ([2], Teorema 3.6) e quindi ogni sottomodulo di $E(S_{\mathfrak{M}})$ è pienamente invariante in $E(S_{\mathfrak{M}})$.
 - $(c) \iff (d)$ Ovvio.

§ 3. SISI ANELLI COMPLETI

3.1. Siano R un anello commutativo con 1 \neq 0 e K un R-modulo f.q.i.c. Per quali coppie (R , K) risulta $\mathfrak{D}_{\mathbf{R}}(K) = \text{Mod-R}$?

Osserviamo anzitutto che se $\mathfrak{D}_{\mathbf{R}}(K) = Mod-R$ allora essendo Δ una dualità

$$\begin{split} R & \cong \operatorname{Chom}_{\mathbf{R}}\left(\operatorname{Hom}_{\mathbf{R}}\left(R\;,\;K\right)\;,\;K\right) = \operatorname{Chom}_{\mathbf{R}}\left(\operatorname{Hom}_{\mathbf{R}}\left(R\;,\;K\right)\;,\;K\right) \cong \\ & \cong \operatorname{Chom}_{\mathbf{R}}\left(K\;,\;K\right) = \operatorname{Hom}_{\mathbf{R}}\left(K\;,\;K\right) = \operatorname{Hom}_{\mathbf{R}}\left(K\;,\;K\right) \cong \mathbf{R} \end{split}$$

gli isomorfismi essendo canonici, per cui R è completo nella K-topologia. Se allora R è su SISI anello e K è il cogeneratore minimale di Mod-R è chiaro che $\mathfrak{D}_R(K) = \text{Mod-}R$.

Viceversa se $\mathfrak{D}_R\left(K\right)=Mod-R$, K è un cogeneratore di Mod-R e quindi contiene l'inviluppo iniettivo di ogni modulo semplice. Allora ogni ideale massimale di R è aperto nella K-topologia e per ogni $\mathfrak{M}\in\Omega$ risulta $t_{\mathfrak{F}}\left(E\left(S_{\mathfrak{M}}\right)\right)=E\left(S_{\mathfrak{M}}\right).$ Ma essendo K f.q.i.c. si ha ([2], Teorema 4.4)

$$\mathbf{K} \cong \mathop{\oplus}_{\mathfrak{M} \in \Omega} t_{\mathfrak{F}} \left(\mathbf{E} \left(\mathbf{R} / \mathfrak{M} \right) \right) = \mathop{\oplus}_{\mathfrak{M} \in \Omega} \mathbf{E} \left(\mathbf{S}_{\mathfrak{M}} \right)$$

perciò K è il cogeneratore minimale di Mod-R e per il Teorema 2.5 R è un SISI anello.

3.2. Il Lemma che segue è stato dimostrato da C. Menini in [1] e poi generalizzato da C. Menini e A. Orsatti in [2]. Per completezza ne diamo qui una dimostrazione a parte.

LEMMA. – Sia R un SISI anello e sia $U = \bigoplus_{\mathfrak{M} \in \Omega} E(S_{\mathfrak{M}})$ il cogeneratore minimale di Mod–R. Allora:

I) Per ogni $\mathfrak{M} \in \Omega$, $A_{\mathfrak{M}} = \operatorname{End}_{R_{\mathfrak{M}}}(E(S_{\mathfrak{M}}))$ con la $E(S_{\mathfrak{M}})$ topologica è il completamento di Hausdorff di R nella $E(S_{\mathfrak{M}})$ -topologia.

$$2) \quad \mathbf{R} \cong \prod_{\mathfrak{M} \in \Omega} \mathbf{A}_{\mathfrak{M}}$$

3) Per ogni $\mathfrak{M} \in \Omega$ $A_{\mathfrak{M}}$ è isomorfo alla localizzazione $\mathbf{R}_{\widetilde{\mathfrak{M}}}$ di \mathbf{R} in $\widetilde{\mathfrak{M}}$ dove $\widetilde{\mathfrak{M}}$ è la chiusura di \mathfrak{M} in \mathbf{R} .

Dimostrazione:

- 1) Poichè $E(S_{\mathfrak{M}})$ è f.q.i.c. $End_R(E(S_{\mathfrak{M}}))$ è isomorfo al completamento di Hausdorff di R nella $E(S_{\mathfrak{M}})$ -topologia ([2], Lemma 3.5). Ma $End_R(E(S_{\mathfrak{M}})) = End_{R_{\mathfrak{M}}}(E(S_{\mathfrak{M}}))$.
 - 2) Poichè R è un H-anello si ha

$$\boldsymbol{R}\cong End_{R}\left(\boldsymbol{U}\right)\cong\prod_{\mathfrak{M}\in\Omega}\,End_{R}\left(E\left(\boldsymbol{S}_{\mathfrak{M}}\right)\right)=\prod_{\mathfrak{M}\in\Omega}\boldsymbol{A}_{\mathfrak{M}}\,.$$

3) Abbiamo

$$\mathbf{R} = \mathbf{A}_{\mathfrak{M}} \oplus \left(\prod_{\mathfrak{M}'
eq \mathfrak{M}} \mathbf{A}_{\mathfrak{M}'} \right)$$

Localizzando in $\widetilde{\mathfrak{M}}$ si ottiene $\mathbf{R}_{\widetilde{\mathfrak{M}}} = A_{\mathfrak{M}}$, poichè $\mathbf{R}_{\widetilde{\mathfrak{M}}}$ è un anello locale e quindi indecomponibile in somma diretta.

3.3. D'ora in poi «SISI anello completo » vorrà dire «SISI anello completo nella U-topologia » dove $U=\bigoplus_{\mathfrak{R}\in\Omega}E\left(S_{\mathfrak{M}}\right)$ è il cogeneratore minimale di Mod-R.

PROPOSIZIONE. – Sia R, un SISI anello completo. Allora R ha solo un numero finito di ideali massimali.

Dimostrazione. - Per il Lemma 3.2

$$R = \mathbf{R} = \prod_{\mathfrak{M} \in \Omega} A_{\mathfrak{M}}$$

dove gli $A_{\mathfrak{M}}$ sono anelli locali. Per ogni $\mathfrak{M} \in \Omega$ sia $\overline{\mathfrak{M}}$ l'estensione di \mathfrak{M} ad $A_{\mathfrak{M}}$. Si scriva ogni elemento $a \in \mathbb{R}$ nella forma $a = (a_{\mathfrak{M}})_{\mathfrak{M} \in \Omega}$ dove per ogni $\mathfrak{M} \in \Omega$ $a_{\mathfrak{M}} \in A_{\mathfrak{M}}$. Fissato $\mathfrak{M}' \in \Omega$ si ha

$$\mathfrak{M}' = \{ a \in \mathbf{R} : a_{\mathfrak{M}'} \in \overline{\mathfrak{M}}' \}.$$

Se Ω è infinito $\bigoplus_{\mathfrak{M}\in\Omega} A_{\mathfrak{M}}$ è un ideale proprio di R che però non è contenuto in nessuno degli ideali massimali di R. Perciò Ω è finito.

3.4. Sia R un SISI anello completo. Per quanto visto R ha solo un numero finito di ideali massimali quindi U è cogeneratore iniettivo di Mod-R. Ne consegue che U è linearmente compatto nella topologia discreta ([3]. Lemma 4) e l'anello R possiede una dualità di Morita con se stesso indotta da U ([3], Teoremi 1 e 3).

Ci proponiamo di determinare i moduli U-riflessivi nella dualità di Morita (cioè i moduli M tali che $\operatorname{Hom}_R(\operatorname{Hom}_R(M,U),U)$ è canonicamente isomorfo a M) mostrando nel contempo che essa è subordinata dalla dualità Δ .

Ricordiamo che la topologia cofinita di un R-modulo M è definita prendendo come prebase di intorni di zero tutti i sottomoduli L di M tali che M/L è isomorfo ad un sottomodulo di $E(S_{\mathfrak{M}})$ per qualche $\mathfrak{M} \in \Omega$.

3.5. TEOREMA. – Sia R un SISI anello completo. La categoria $\mathcal R$ dei moduli U-riflessivi nella dualità di Morita posseduta da R si identifica mediante il funtore che « dimentica » la topologia con la sottocategoria di $\mathcal C_R(U)$ formata dai moduli completi nella topologia cofinita.

 $\label{eq:Dimostrazione.} Dimostrazione. - Osserviamo in primo luogo che la topologia cofinita di un modulo M coincide con la topologia debole di Hom_R(M , U) cosicchè un modulo completo nella topologia cofinita è U-compatto ed inoltre$

$$Chom_R(M, U) = Hom_R(M, U)$$
.

Attese le proprietà della dualità Δ M è U-riflessivo.

Viceversa sia M U-riflessivo. Allora M è linearmente compatto nella topologia discreta ([3], Teorema 2). Quindi M è linearmente compatto nella topologia cofinita e quindi completo in tale topologia. Poichè una verifica diretta mostra che M con la topologia cofinita è in LTR ne consegue che $M \in \mathscr{C}_R(U)$.

BIBLIOGRAFIA

- [1] C. MENINI (1977) On E-compact modules over SISI-rings, «Ann. dell'Univ. di Ferrara, Sez. VII Sc. Mat. », 23, 195-207.
- [2] C. MENINI e A. ORSATTI (1979) Duality over a quasi-injective module and commutative \mathfrak{F} -reflexive rings, «Symposia Mathematica», 23, 145–179.
- [3] B. J. MÜLLER (1970) Linear Compactness and Morita Duality, « Journal of Algebra », 16, 60-66.
- [4] P. VAMOS (1975) Classical Rings, « Journal of Algebra », 34, 114-129.