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Equazioni funzionali. — Asymptotic stability properties for nom-
lnear diffusion Volterra equations. Nota ® di ANDREA SCHIAFFINO
e ALBErRTO TESEI, presentata dal Socio G. Scorza DraGoONI.

RIASSUNTO. — Si dimostra la stabilitd asintotica uniforme dell’unico equilibrio non
banale di un’equazione integrodifferenziale di Volterra con diffusione, soggetta a condizioni
al limiti di tipo Dirichlet.

I. INTRODUCTION

In the present paper we study Liapunof stability properties of the equi-
librium solutions to the integro-partial differential problem:

10(¢, %) =Dyu(t, x)—u(z, x)fds,éo(t—s yx)u(s, x)—éo(x)'uz'(z‘, x)

(¢ - in (0, +00)XxQ
u(t,z)=o0 on (0, - 00)xaQ
u(t,x) = uy(t,x) in (—o0,0]XQ,

where Q = R%(d < 3) is an open bounded domain with smooth boundary

2Q, Dyu) (x) =.2 3; (@i (%) 3, (%)) + a (x) u (x) (xe Q) defines a linear,

formally self-adjoint elliptic operator of the second order, and &,, £, , %,
are given nonnegative functions. We can think of the integro-differential
equation in problem (1) as of a generalization of Volterra’s population equa-
tion with infinite delay including space dependent effects [10]. For simpli-
city, only the case of homogeneous Dirichlet boundary conditions will be
considered; however, more general boundary conditions ‘can be dealt with
similarly.

In the space-clamp case, nyamely

t

u (f) = pu () —u(r) A ds & (t —s) u (s) — b (2) (>0
(2) Zeo

w(t) = u (2 ¢ <o),

(*) Pervenuta all’Accademia I’1 agosto 1979.
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where £ (-)e L' (o, -+ 00) and #, (-) is continuous and bounded on (— co, 0],
the asymptotical stability of the nontrivial equilibrium 2 = u/(| 2|1+ )
(here w > o0) of Volterra’s equation follows from the spectral condition
[ + #k* () + 4] # o for any e C, Re{ > o0 (4*(-) denoting the Laplace
transform of £(-)). A generalization of such result for a more particular
version of the Volterra equation in (1), endowed with homogeneous Neumann
boundary conditions, was proved in [9]; in the same frame, conditions ensuring
the global attractivity (in the supremum norm) of the unique nontrivial equi-
librium with respect to strictly positive initial data were given in [5].

In the present paper a linearization argument is used to investigate the
stability of the unique strictly positive equilibrium of the equation in (1) by
means of a characteristic equation, thus generalizing to the present case the
above referred spectral condition. A major difficulty with respect to [9] is
the noncommutativity of the terms in the characteristic equation, to be over-
come by a slight refinement of the results in [6]; regularity results are also
needed, which givé rise to the requirement d < 3.

2. STATEMENT OF THE RESULTS

Let Q be an open bounded domain of R*(d < 3) with smooth boundary
2Q. We shall denote by X (norm | - |) the Banach space C, (Q) of continuous
real functions on Q: = QU 2Q which vanish on 3Q, endowed with the su-
premum norm. The algebra & (X) of linear bounded operators on X will
be thought of as endowed with the operatorial norm || - || We shall also be
dealing with the Banach space L' (0, + 00;Z (X)), C¥(Q) (£ >0;C°(Q) =
=:C (Q)) and the Sobolev spaces H2(Q), Hy(Q) [2]. For any feLl(o,-+
+ 00; £ (X)) we shall denote by f*(-) the corresponding Laplace transform.

Let us consider the following operator A, with dense domain in X:

(D<A0>:—_~{ueX|D2uGX}

} Bom) ()1 = —Daw) ()7 =~ X 8 (@ () G (D—a (I u ()
\ . @eD@AY.

We shall assume a2;(-) = a;(-)eC*(Q) (7,j=1,---,d) and a(-)e C(Q),
so that A, is densely defined and formally self-adjoint. Moreover, the uniform
ellipticity of — A, will be required; thus we shall denote by A the principal
eingevalue of — A, and by yx the corresponding positive eigenfunction:

Ay +rap=0 , xeHs(Q , fﬂx)dle.
o

Let us remark that ye€ X due to the assumption & < 3. As is well known,
-— A, has compact resolvent; moreover, it is the infinitesimal generator of
an analytic semigroup [8]. '
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The maps &,(-) and 4, (¢, -) (# = 0) are assumed to be continuous and
nonnegative on ﬁ,‘ thus corresponding multiplication operators 4 and 2 (#)
on the space X are defined in an obvious way; in addition, £ (-, ) will be
assumed to be measurable in (#,x)e (0, 4 co)x€2. Then we can rewrite
problem (1) in the following abstract form:

¢

) dd—z;z~A0u—ufdsk(t——s)u(s)—6%2 ‘(t>0)
( p— (<o)

Concerning the solutions of problem (3), the following theorem holds.

THEOREM 1. ZLet 2()eL! (o, + 00;Z (X)). For any continuous, boun-
ded nommegative u,: (— 00, 0] — X there exists a unique, nonnegative, global
mild solution to problem (3).

The continuous embedding H2 (Q) N Hj (Q) C» X has been taken into
account in the above statement; the Hoélder continuity of (—Agy#%) (+) and
(du/d#) (+) can be proved under additional regularity assumptions (for this
purpose, no requirements on the space dimension & are needed [4]).

An equilibrium solution of the integro-differential equation in (3) is by
definition a solution of the elliptic problem:

+00

4) | ——Aoz;—(fdm(z)+b) uw=o0.

0

If the principal eigenvalue A of — A, is positive, a unique nontrivial
solution 7ze X of (4) exists [3, 7]; we shall limit ourselves to investigate the
stability of such equilibrium (the stability properties of the trivial equilibrium
being elementary). ) '

An equilibrium solution ze X is said to be X-asymptotically stable
with respect to (3) if it is both X-stable (namely, for any € > o there
exists §; > o such that sup | 2o (£) — u |y < 3¢ implies iulg |2 (£) —uly <¢)

t< >

and X-attractive (i.e., there exists % >0 such that sup |z, (#) —u«ly <7
t<0

implies |z (#) —u|y—0 as ¢z — -+ 00).
We can now state the main result, concerning the X-asymptotical sta-
bility of the nontrivial equilibrium solution of (4) (in the case A > o).

THEOREM 2. .Let A > 0; assume moreover:
+-00 v _
&) fdz|,é0(z,.)xx<+oo,
0
0

fds]éb(z‘-—s, kg (s, ) g < const. |z — ¢ |°

—00
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with Be©,1];
ky) there exists o > (d — 2)[2 such that 7
max {| #&)* (€, ) Iy, | @&* (L, ) I} Sconst. (1 + [ H7"
Jfor any {eC,Rel>o0;
H)  for any {eC,Rel =0, there exists [{1 + A -+ aik* (D) re £ (X),

+o0

where A:::Ao—l—zzib—l—z?fdté(t).
[

Then the nontrivial equilibrium i of the Volterra equation in (3) is
X-asymptotically stable.

3. PRroors

The proof of Theorem 1 is easily sketched. The local existence result
follows by [5, Theorem 2]; as for the uniqueness statement, it is a standard
consequence of Gronwall’s inequality, due to the local Lipschitz continuity
of the nonlinear terms in the right hand-side. The nonnegativity of the solu-
tion, thus its existence in the large follow from the maximum principle for
integral equations [I1].

Let us notice the following lemma.

LeMMA 1. Let the above assumptions on Q and — Ay be satisfred. Then
the following hold.

A) — A is the infinitesimal gemerator of an ana/j/tz'c semigroup T ()
on X; . .

A,) the operator (L 4 A)t is compact for amy (e C belonging to the
resolvent set p (— A);, moreover, theve exists a sequence {P,} < L (X) of
projections such that (ne N):

) dim P, < oo ’ Py Prn =P Pp=Py;
(iiy P,A < AP,;
(iii) there exist 9y€ [0,1) and Cye o (—A) such that (1 —P,)-

(%o + A7 converges in the strong sense as n diverges,

(V) there exists i€ N such that, for any n > 1#, the type o, of the
analytic semigroup (1 —P,)T () is strictly negative.

Proof. A,) follows from [8] by standard results; the compactness state-
ment in A,) is a well known consequence of the Rellich theorem. In order
to introduce the projections P,, it is convenient to think of A as of an operator
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in 12 (Q), with D (A) : = H2(Q) N Hp (Q). Due to well known representation
theorems, we get — Av = z A (v, @) @; for any ve L2(Q) (-, -) denoting
=1

the usual L?scalar product), where the eigenvalues A; go to — 0o as 7 > 0,
and the eigenfunctions ¢; of — A are continuous on Q by classical regularity
n

results. Now we claim that the family {P,}e Z (X),v > P,v: = Z (v, @) o;
1

=
satisfies the requirements A,), (i)-(iv); only the statement A,), (iii) deserves
further investigation. Observe that, for any &, > d/4, the space H*0: —

= {fueLz(Q)

2 |n; [2%0 [{(v,9) P < OO} is continuously embedded into X by
=1

Sobolev inequalities; moreover, it is easily seen that P, : H* — H* and P,
strongly converges to the identity in the H**_norm as » diverges. Then
the conclusion follows from the continuous embedding H**C. X, due to
the assumption d < 3.

Consider the following linear integro-differential equation in X:

t

(5) %:—Auﬁﬁfdsk(z‘—s)u(s) (t=o0)

0

(4 denoting the multiplication operator on X, v () — (@v) (-): =#(-) v (-)).
According to [6], there exists a unique fundamental solution # - (¢) (¢ = 0)
such that % (#)w is the unique mild solution of (5) equal to @ for £ =o0.

We can now prove the main result.

Proof of Theorem 2. It suffices to prove that [[% ()] < ¢/(1 + )
(¢>o0;¢t=0); then ¥ ()eL'(o, + 00; % (X)) and the result follows by a
standard linearization argument [1, 9]. Due to the assumption £4,), the
above inequality follows by the same arguments as in [6, Proposi-
tions 4,09].
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