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Analisi funzionale. — 7%e equations vy =Sy +T and By=Sy+T
with B,S, T distributions. Nota® di Piero Prazzi®, presentata
dal Corrisp. G. CimmINo.

R1aSSUNTO. — Fondandosi su una definizione di prodotto proposta da E. E. Rosinger
si studiano le equazioni ordinarie y' =Sy + T, By'= Sy + T con B, S, T distribuzioni.

INTRODUCTION

In this paper we shall use the general framework of [1], which is neces-
sary for the understanding of our work; in this monography the author
constructs linear algebras which contain vector subspaces canonically isomor-
phic to 2’ (R™ so that a commutative and associative product may be
defined between distributions.

The main aim of this construction seems to be the study of nonlinear
partial differential equations, but the method allows us to consider also linear
differential equations with irregular coefficients, while generally in the frame-
work of usual distribution theory only C* coefficients are allowed.

In this paper we consider two simple Cauchy problems relative to ordinary
first-order differential equations, namely 9’ = Sy + T, By’ = Sy 4+ T : they
involve irregular products with distributions B, S, T.

The properties required to the algebras play an essential rdle in the proofs
of existence and uniqueness results: for the former problem such a result is
presented in Theorem 4, while an existence result for the latter one is proved
in Theorem 5.

NOTATIONS

We shall use systematically Rosinger’s notations: we refer to [1], par-
ticularly chapter 1, throughout the whole paper; here are only a few particular
notations.

We denote by N the set of positive integers, and N, =N U{o}, so
in particular we put W = [C® (RM]" = W (R"): if se W we write s = (8,)yen
and s (xp) = (v (Fg))ven Vroe R? if ae Ny (a multi-index) we write
D%s = (D% sy)ven and so on. Moreover, we shall write A < B if A is a (linear)
subalgebra of B.

(*) Pervenuta all’Accademia il 2 ottobre 1979.
(**) Address of the author: Istituto Matematico « S. Pincherle » dell’Universitd di Bolo-
gna, Piazza di Porta S. Donato, 5 — 40127 Bologna.
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Finally, if 2€ C,2 70, Arg #z denotes the principal argument of z, so
Arg ze) — =, =]; [x] is the entire part of xe R.

First, we define certain classes of subalgebras in W, and prove some
properties of them, described in Theorem 1.

DEFINITION 1. Awn algebra A <W is &—closed zﬁ szeA VEeN,
s = (Swy)veN » YVE Nspy Sy uniformly on compact subsets of R® with all
derivatives, itmply s = (sy)yen€ A.

THEOREM 1. Suppose A < W is closed for affine changes of wvariables,
closed for multiplication by the coordinates (i.e. (sy)yen€A = (5,° C)yen and

(Pjsyhvene A, where C(x) = &x + b, P;(x) =x;¥Yxe R", VYje{1,---, n},
with & invertible nXn real matrix, b€ R") and E—closed. Then

i) se A =203sfox;e A Vje{1,---,n} (A is derivative invariant. see
[1] p. 14);
%

ii) with ac R fixed, put T,(f) (x)::Jf(xl,u S Xpaa Ly Xpry e, Xy) dE
a

(xe R*, feC(R*, C), pe{1,---,n}); then (s,)yen€ A = (T, (s\))veN€E A;

iii)y se A,VWeNs, (RN s Q = Q< C witr O simply connected, f
holomorphic in Q =f(s) = (fo s)yen€ A.

Proof. 1) Put Z,(f)(x) =A(f(x + kle) —f(x)) with fe CT(R®),

£eN,xe R and ¢; = (0,---,1,--+,0); we have ziv (%) = lim Zy (sy) (2).
J 7 k— o0
sy

By hypothesis, (Z;(sv))ven€ A V£e N; if ae Ng, D*
ol

so we have ohly to prove X; (f) " “— Vfe C” (R”) uniformly on compact
J

() = lim 2, (D" 5, (=),

co X
sets, which is trivial.

ii) Up to an affine change of variables, we may assume p = #. Con-
sider now for fe C* (R")

x—a

Z f(z‘,a—l—‘]?(x——a)) , te R*1, xe R,

k
o (f) 2, %) = 2

J=

since s€ A = (o (Sy))ven€ A, we must only prove

or (f) (¢, %) = ‘ff(z‘,u)du

with all derivatives, uniformly on compact sets, Vfe C* (R").



208 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXVII ~ Ferie 1979

First put a¢;=a;x(x) =a —l— (x — a); then

() 7 — ff(t u)du—Zf[f(t @) —F ¢, ] du,

aj—1
SO

o) 6,0 — [ 72, du

<|x—al sup |f(#,2) —f(@ @)| >0

|z—w | < (1/8) | z—a]

uniformly if |x —a| < const. and f€ K, a compact subset of R* Now
observe

o (D" ) =D (f) if «,=o0,
so we have only to prove

Dy, o (f) P D' f VreN

uniformly on compact sets. Now compute
Dy op(f) (¢, %) =
k r—1
— %5 “f(z,a»( ) +Z o ¢ e (4)

. ] a;—a
since - =-%""% e have for x “*a
k X —a

k L\ r—1 *
(1) j;l —;— D, 2, a;) (‘2—) P (x — a)—'f(D;—lf) (¢, ) (st —a)y—du =

=06,(¢, %)

z
k r
@ REFEONe, a»( ) ez = [ 1) ¢ w) (e ay du =
a .
== Oy (t 1 .9(5) ’
6y, 0, are continuous functions in R* and (re, + o,) (¢,) = Dy ' F (2, %),
so we have only to prove that the limits (1) and (2) are uniform on compact

subsets of R™ Call %, , %, the left-hand sides in (1), (2); then, if ¢ <x

2, —o; =

k
-3 [ (8¢ a5 — -+ — D) (6, ) (- du) —ay”

j—l
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a

= (x—a)y” ﬁ f (D7) ¢, 2] [(@ — @ — (e —ay ™)) du +
+ (x —a)" i {(u — oyt (O ) () — O A @ W) de =1, + 1.

%51

We note that £~ Z 7 o »~1 Vpe N: this follows from the simple inequality

k41 E+1 E+1

j(x —1)yldr < {[x r-Idxy < {x’"l dxr VieN.

1

Now, if ||#]| < const., 0 < x— g < const.

|1, ]<C(x—a)”’2f[(a,——-“)r_ — (@ —aydu =

%

k .y r—1
=C [/e-l > (%) —7'1] oo

Jj=1

Since for {|#|| < const., 0 < x —a < const. we have

DI, a) — DL (0 | SCylag—ul,

we get

vl
A SCl(x—a)“szﬂf(u——a)’”l(aj—u)du:

a,
7

=Gz —a)yrrt Z |~ @ —ar@—a + [ oy au| =

=C, 7 (x —a) [(r—l— I)”—/e*ﬁ (j;I )r] ———>0

j=1 k> +o0

For'z < a the proof interchanges 2 and x, since the preceding estimates depend
only on x — a; the proof of (2) is similar but simpler,

iii) By Runge’s theorem, f(z) = lim Pr(2) with P, polynomials,

uniformly on compact subsets of Q; since (Pkosv)sze A VieN we get
easily the desired result.
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Let A < W (R) be as in Theorem 1; moreover, suppose ae R, 8eCNN A,
B8 = (B)vex; if s,tc A consider the ‘Cauchy problem’

¥y =sy -+t
y(@ =48
of finding ye W (R), ¥ = (#)ven such that

)

J’\,o:-fvyv + 2
v (“) =fy.

We may write the unique solution of (P,) as

yd@==(f;@0®m(—ir&00&4cw—kﬂ)wm(fi(@d%)

o o o

)

so that by Theorem 1 y € A.

In other words, we may state

THEOREM 2. Suppose A < W (R) be such that a) A is E-closed,
b) A ds closed by multiplication by x; ) A is closed by affine changements
of the variable; d) CN < A: then Ve CN the ‘ Cauchy problem’ (P) has dits
unique solution in A.

From now on we fix a Q-regularization (V,S% (see [1] p. 15) with Q
implying @, ¢,d in Theorem 2; then Vpe N, A% (V (p),S% satisfies @ —d
in Theorem 2 (6 is obvious since U SAQ(V (),S% in. any case) and
consider the algebras A, = A% (V (2),SH/1%(V (#),S%: we write [s], for
s IV (), se A%(V (p),S%, and introduce the algebra homomor-
phisms (€ N) and linear mappings: »

Yr,r—1: Ar _>Ar—1 y Yr,r—1 <[s]r> = [s]r—l Vse AQ <V <7> ’ SO)
Dyr1:A, A, Drpa (1) = [8] Vse A°(V (), S0

(see [1], pp. 18-19).
Now consider

=8y 4 ¢

y( =248
with s,2€ S°, Be CV, ae R fixed.

(P

DEFINITION 2. We call rsolution of (P%), re N, an clement ye A,

such that
(Po ‘ DT,T—-ly = [3]1—1 Yj,r—l y+ [t]r—l
i —pe Ve 1),

Jfor a suitable ze A°(V (r),S", y = [2],.
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It is now possible to prove

THEOREM 3. [If for ke N, holds
(Sp (wy)vene 12V (), %) = (Wy)ene I°(V (4), S

with W, (x) = ‘ w, (uydu (ve N ,xe R), then if y,,y, are (£ + 1)-solutions

a

of the Cauchy problem (P9), we have Yy 191 = Yerre Ve -

Proof. Let y;=[2)en,?=1,2 with z;e A°(V (44 1),S% such that
z; () — Be IT(V (&), S"): we shall prove z, — 2,6 I2(V (£),S%. By (Pi,1)

z 4+ 13V (8,89 = (sz; + ) + 1°(V (&), S, i=1,2,

so that

(@m—2) 10V E),S) =s@m—=) +1°VEH,),
whence, with w =z, —z,
(3) w =sw+i, ic1®(V(®),s%;
moreover,
) w (@) = (2, — ) — (7@ — e I°(V(H),S).
Now from (3) and (4) we get

w, () = (w (@) + Jz (@) exp (%Jnsv () du) dv) exp ( f 5 (1) du) :

(exp (}s () du)VENe A% (V (&), SY

=4

and

(iv-exp (—fs\, (20) du))VENe 19V (&), SY:

o

but by (Sp)

v

( z (v) exp (—J.sv (x) d%) dv)VENe 1°(V (k),SY,
whence we I°(V (&), S9.

We introduce now the concept of solution of (P? and prove an existence
and uniqueness result.
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DEFINITION 3. We shall say that (P%) has a solution y iff
) ye A°(V(»),S)  WreN;

i)y [¥,=»+1°(V(),S) provides an r-solution to (P% vreN.
We shall say that a solution y to (P% is unigque iff

z soluzion of (P%) =y —zeIQ(V(),S9 vre N.
It is now easy to prove

THEOREM 4. (Existence and uniqueness theorem) Swuppose given (P°):
it has a wunique solution if (Sy) holds Nk, big enough.

Progf. By Theorem 2, y = (9)yen with

¥y (%) = exp ( fsv () du) [Bv + fz‘v (v) exp (~—fsv ) du) dv]

o <4

is a solution. Moreover, if 2 is another solution, then by Theorem 3 we
get [¥], = [z], is » is big enough, so, since (I2(V (), S")),en is a decreasing
sequence of sets, we have y —z€I%(V (r),S% - ¥reN.

Consider now the Cauchy problem
by =sy -+t

®) { by =sy

ly@=8

with b,s,te S% geC, acR.

DEFINITION 4. We call r—solution of (R), reN, an clement yeA,
suck that :

S [b]r—l Dr,r-ly = [s]r—l YrY + [t]r—l

R,
o 2@ —Bel®(V(i—1),5

Jor a suitable ze AS(V (), 9%,y = [2],.
Solutions are defined in an analogous manner as before.

Introduce now the hypothesis
(H)V¥reNioMe(V(),S" such that Arg (6, (*) + ol (2)) # =
vweN , zx€eR.

We can now state and prove an existence result for (R).

THEOREM 5. Suppose given (R) with b satisfying (H): then (R) has an
r-solution Nre N. If o' =o VreN, (R) has a solution.
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Proof. Introduce the ‘Cauchy problem’.

. s ot
R, T bt “ T B Tom
\)“(“>=5

vre N the algebra A°(V (#),S? contains (& + @™~ by Theorem 1, iii)
(f (&) = 21, so by Theorem 2 the unique solution "l of (R,7) in W(R)
belongs to A (V(7), SO.

Put now y = 41 + 19(V (#),S%: y is an r-solution of (R).
In fact, b-(um), — sl = b+ w[’]) (um)’ — st — ! (u[']), =
= —oM @ el?(VEr—1),99) and :

W], =y, 4" (@) —B=0e IV (—1), .

If o does not depend on 7 then ue A (V(#),S» VreN and is
clearly a solution.
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