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A nalisi m atem atica. — On bounded and total biorthogonal systems 
spanning given subspaces. Nota di P aolo  T eren zi <(*) **>, presentata 
dal Socio L. Am erio.

R iassunto. — Siano Y e Z due sottospazi quasi complementari di uno spazio di Banach 
separabile B. È noto (Vinokurov) che B ha una M-base unione di una M-base di Y e di una 
M-base di Z; inoltre è noto (Milman) che, se è una M-base di Y, esiste una successione 
{zn} di Z tale che {y^} ufs^} sia una M-base di B.

Recentemente Ovsepian-Pelczynski, dando una risposta affermativa ad un problema 
da lungo tempo irrisolto, hanno dimostrato che B ha sempre una M-base uniformemente 
minimale.

Tale risultato pone allora la questione se sia possibile estendere alle M-basi unifor
memente minimali il Teorema di Vinokurov e quello di Milman. Si dimostra, nel presente 
lavoro, che tale estensione non è possibile; anzi, se {jpw} è una successione completa in Y, si 
dimostra che in generale non esiste una successione infinita {zg$ di Z, tale che {yn} U {zn} 
sia uniformemente minimale, anche nel caso di {y basica.

§ 1 . I n t r o d u c t io n

Notations, definitions and recalls are reported in § 2.
Let Y and Z be two quasi complementary subspaces of a separable Banach 

space B. It is known (Vinokurov^ that B has an M-basis union of an M-basis 
of Y and of an M-basis of Z; moreover, if {y is an M -basis of Y, Milman 
stated that it is possible to extend {yn} to an M-basis of B by means of a se
quence of Z. On the other hand a recent important result of Ovsepian-Pelc- 
zynsky stated the existence of an uniformly minimal M -basis for B. This 
raises the problem if it is possible to extend to the uniformly minimal M-bases 
the results of Vinokurov and Milman.

Then in § 3 we study if B has an uniformly minimal M-basis, union of 
an M-basis of Y and of an M-basis of Z, and we find that this is not in general 
possible; indeed, what’s more, we prove that, if {y is an uniformly minimal 
sequence complete in Y, it is not possible in general to have an uniformly 
minimal sequence U by means of an infinite sequence of Z. Therefore 
also M ilman’s theorem cannot be extended to the uniformly minimal M-bases.

In § 4 we are concerned with the extension of minimal and uniformly 
minimal sequences. In particular we point out that, if {yn , h ^ n> 1 is a biortho
gonal system of B, with || y n || • || hn || <  M <  +  00 ' i n >  1 and with {yn}n> 1

(*) Pervenuta all’Accademia il 27 giugno 1979.
(**) Istituto di Matematica del Politecnico. Piazza Leonardo da Vinci 32. 20133 Milano.
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not complete in B, in general it is not possible to choose y Qe B and {gn}n>0 <= B' 
so that {yn ,g n}n>0 is a biorthogonal system, with sup { ||.y j| • \\gn \\ ; n >  1} 
<  2 M. We give also a proof of M ilman’s theorem.

In § 5 we define the M-bibasic systems and we study the extension of 
biorthogonal systems.

Finally in § 6 we raise a few problems, connected with the above questions.

§ 2 .  N o t a t io n s , d e f in it io n s  a n d  recalls

Theorems are enumerated by Roman figures and theorems of recalls 
by starred Roman figures. We use {n} for the sequence of natural numbers, 
R+ for the positive real semiaxis, *€ for the complex field, B for a separable 
Banach space and B' for the dual of B.

Let {.xn} be a sequence of B, then span {xn} is the linear manifold spanned 
by {x^y while [xn] is the closure of span {.xw}..

Let {xn} c  B , we say that {xn} is:

a) overfilling if [xn] — [xnk] V infinite subsequence {xnÂ} of \ x ^ \
b) m inim al if xm $ [xn]ns¥m , Vw ;
c) uniformly m inim al if inf {inf { || %m +  x  || ; x  6 span {xn}n^ m}} >  o.

m

Let {xn} a  B and { fn} c= B' , we say that {xn , / n} is a

d) biorthogonal system if f m (xf) — Smn \/m  and n\
e) bounded biorthogonal system if f m (xf) =  8mn and |j f n || • (| x n || <  

<  M <  +  00 , V m  and n.

It is well known ([3] and [2], see also [8] p. 54 and [7] p. 165) that: {xf$ 
(uniformly) minim al <==> 3 { /w} c: B' w ith {xnyf n |[^]} (bounded') biorthogonal 
system.

Let {xn y fy^  be a biorthogonal system, we recall that

/ )  is M -basis of B if [ / J  is total on [xf) (that is [xn] — {0},
where [ fn]L =  {x e B \ f n (x) =  o V»}) -and if [xn] =  B ;

00
{xn} is basis of B if x  =  2 » /»  (x) x n Vx € B ;

1
h) {xn} is M-basic (basic) sequence if {:x is M-basis (basis) of [x n].

Moreover we say that two subspaces Y and Z of B are quasi complementary 
if Y fiZ  =  {o} and Y. +  'Z is dense in B.

About the uniformly minimal M-bases we recall

I*. (Pelczynsky [6]) For every z >  o B has a total biorthogonal system 
{yn>h70 O'»} complete in  B and \\y n \\ • \\hn \\ <  i +  s \fn.

The same result had been found by Ovsepian-Pelczynski in a preceding 
Note [5], with the weaker condition that \ \y n\\ • \\hn \\ < M  < +  ooVn.



Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXVII -  Ferie 1979I/O

About the M-bases spanning given subspaces we recall
II*. (Vinokurov [12], see also [9] p. 187) Let Y and  Z be two quasi com

plementary subs paces of B, then =» B has an M -basis union of an M -basis of 
Y and of an isli-basis of Z.

Finally, about the extension of M-bases, we recall

III*. (Milman [4] p. 121). Let Y  and  Z be two quasi complementary sub
spaces of B and let {y f i  be an M -basis of Y, then => B has an M -basis {y fi U fa fi, 
where {2 f i  is a sequence of Z.

§ 3 . U n ifo r m l y  m in im a l  M -b a se s  s p a n n in g  g iv e n  su b sp a c e s

In this paragraph we ask if Theorem II* keeps true for the uniformly 
minimal M-bases. More generally we consider the following question:

Let Y and Z be two quasi complementary subspaces of B, does it exist 
an M-basis {yn} of Y which is extendible to an uniformly minimal M-basis 
of B by means of a sequence of Z?

By next example we solve this question in the negative; then it follows 
that both Theorems II* and III* cannot be extended.

Example I. 3 a separable Banach space B j, with two quasi complementary 
infinite dimensional sub spaces Y  and Z, so that, i f  {y f i  and {2 f i  are two infinite 
sequences of Y  and Z respectively, with [yn] =  Y  or zvith [2fi — Z, then {y fi U {2fi  
cannot be uniformly minimal.

Proof. Let {vfi U {wfi be a linearly independent sequence of elements 
of a linear space and let us set

m
(1) +  $nwn)1

v  {«„, ß X = ic  <g-
m

If' 2 n!(aw v n +  ?>nw n) (where some or ßw can be =  o) is the general element

of span {vfi +  span {wfi , VX u fan , <zn , ßw , ßn}üU c  ^  by (1) it immediately 
follows that

= f . ( | . »  + e , l ( i - j r ) +  1 1 1 ^ 1 ) ■

m
fan Vn “h ßw w fi =  O <==£ 0Ln ß

for I <  n <  m  <=» 2 n fan vn +  $nwfi =  o ;

■s1 n fa^n Vn d- Xßw w fi | X|
m

^^jnfan^n d~ Qn^n) > 1
m

'jLin fan Vn d~ ßn^n) <
m

^jjn fan an) Vn -f* (fin ßn) w fi

+
m

^ n fa n V n f i  •1

+
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Therefore (1) is a norm, hence (we can think {vn} U {w n } in C0ĥ i)  let us set 

(2) Y  = { v n] , Z =  [wn] , Bj =  \{ v n} U {«/„}] .

Moreover by (1) we have that

fan Vn ~i" ßw ̂ n)1

•m I

> 2 . — V {<*„ , ßX =  1 <= Cg-

(3)

r 2

Therefore ([1], see also [8] p. 54) by (1) and (2) we have that

fari) U {^n} is minimal, moreover Y and Z are isometric to lx , 

with {>vn} natural basis of Y and {w^} natural basis of Z.

By (3) it follows that
00 00

X G Y O Z ^  X fi &fi Vfi n ßn ^
1 1

00

fan Vn — ßn^n) =  O .=» <XW =  ßw =  O V» => * =  O.
1

Hence, by (2), Y and Z are two quasi complementary subspaces of Bj. Let 
now {.r n} c: Bj so that

(4)
\ fan} =  fan} U fan} , with || || =  I V^, moreover [yn] =  Y

I and is an infinite sequence of Z.

Let us fix m e {n} , we shall prove tha 3 n e  {n} so that

(5) inf {Il Zn +  X II ; * e span +*span {_yn}} <  1/2™ ,

B y .(3) and (4) we have that
00 00

(6) * » =  2 *  “«*“ '*> with 2 *  I aKt I =  1 . Yn.1 1

By (6) I <xn/c I <  I \/n  and yè; h en ce 3 an in fin ite su bsequ en ce {n^  o f  {^} 
so that

lim oin.k =  oq. , for 1 <  k <  m +  2.
i-> o o

Therefore 3 r6{^}  so that, setting =  n and tzt+1 =  « +  p ) we have that

(7)
7n -i" 2

2^+1

On the other hand, by (4), span fa n} is dense in Y; consequently by (1), (3), 
(4), (6) and (7) we have that

inf { II z* +  x  H ; x e  span {*»}«** +  span {y n}} <

< &n  % n + p  ^ n k  ®To ~f~ ^ j k  & n + p , k  V j c
m+3 m+3

m+2
fank (̂n+p>k) 'W(c +
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JC* (w t  —  vk) +  L  <*»+?,* (vh — zvt) <
m+3 W+3

W+2 II
^£jk (potile ^n+p,k) w h “ f i

n̂Jc (jVjs ®k)
ra+3

+  ^ a n+pyk (Vjç — w £ )
Il ra+3

m + 2

' I — &n-\-p,k I ~\~

S I Unk I , V
_ & ~fc-l > J -* kra+3 2' ra+3

&n+p,k I
/ifc—1 < —=:2»i+l 2ra+2

I / ° °  °° \+̂2 ( 1 ̂**k I ~bI ̂n tp ,k I I
\ra+3 m+3 /

<

<
I

2w+l +
i

2 r a + 2  ^

I
2m

That is (s) is proved, consequently {xn} is never uniformly minimal, which 
completes the proof of example I.

§ 4. E x t e n s io n  of m in im a l  a n d  u n if o r m l y  m in im a l  se q u e n c e s

Firstly we consider the extension of minimal sequences, hence theorem 
III* of §2.

It is not possible to improve this theorem, with the further condition 
of {zn} complete in Z. Indeed, if it is not Y -f Z — B, Singer pointed out 
([9], p. 186) that 3 a particulr M-basis {y n} of Y, so that it is never possible 
to have {#w} complete in Z. Moreover the author [10] proved that, if Y is an 
infinite dimensional and codimensional subspace of B and if {yn} is an M-basis 
of Y, then 3 a subspace Z of B, quasi complementary with Y, so that, in the 
Banach space B/Z , {yn +  Z} is overfilling.

Milman stated Theorem III* without proof. We wish now to give a proof, 
precisely we prove that

I. Let {yn} be a m inim al sequence of B and let Z be a sub space of B 
quasi complementary with [yn], then'. =>3 a sequence {zn} of Z so that

00

{wn} — { y 1, #1, y 2, #2 > * • •} is- m inim al and complete in  B, with P) [wn]n> m ̂  [y n].
m=1

Proof. Let {>vn} cz B and {s^} c= R.+ so that

(8) V {un} c= B with II un -— vn \\ <  zn Wn , {un} is complete in B.

Moreover let us set

^ n  ~  and Bn == B/Yn , Wn.

We shall leave out the trivial case of Z finite dimensional subspace of B. 
By hypothesis 3 { ^ n}w>i c  B so that

{xln +  Yi) is M-basis of Bj , with {xln} c~ Z.(9)
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Then 3p x e {n} and e B so that
p

(io) Il «1 — 1̂ II <  Si , with zq 6 span {yn} +  span {xln}nh .

By hypothesis and by (9) {y, +  Y2) U{xln +  Y2)^Li is a linearly independent 
sequence of B2, hence i{ x 2 „}»>i <= B so that

, . t {yi +  y 2} (J {xln +  Y2}'Li U {x2 n f  Y2}ît>i is M-basis of B2,
0  0

' with {x2n}n>1 <= span {xln}n>Pl ■

Then 3^ 2 -  i n} and u2e B so that

2 P.
(,12) Il u2 — v2 II <  s2 , with u2 6 span {yn} +  sPan (*»»}»=1 •

2

Now {y n +  Y3}Lx U { U  {xin +  Y3}wLi} is linearly independent in B3 then
i=1

we can extend this sequence to an M-basis of B3, by means of a sequence 
{xSn +  Yg}^! , with {x3n} c  span {x2 n}n>Pi.

So proceeding, by (9), (10), (11) and (12) we find { x ^  and {un} in B so
that

00
1 {xn} =  U {x in}nU , where, V »  ,Ì =1

(m—1 \
{ +  Yjr î1 u { (J U{xmn +  Y„}n>i is M-basis of

li= i J

Bm , with span ; moreover , Vw ,
m—1 ^

II ««. — »mil <  sw, and {un}nZi a  span {y n} +  span {;rm}nL i .

!
By (8), (9) and (13) it follows that

(14) {y n} U {xn} is complete in B , with { x ^  <= Z .

Moreover by (13), Vw, we have that y m $ [{yn}n^m U {*„}], hence 3 (A„} <= B' 
so that

(ï 5) { >  &n} is a biorthogonal system, with { x ^  cz [A*Ji.

By (14) 3 {sw} cz B so that

(16) {zn +  Y J  is M-basis of B^, with {#n} cz span {#w} .

By (16) 3 {Gn} c= B'i so that {zn +  Y x , GÄ} is a biorthogonal system; there
fore, if we set, \ / n , g n (x) =  Gn (x +  Yx) V xe  B , it follows that

(ï 7) {2n j gni is a biorthogonal system, with {^n} c= Y{ .

12. — RENDICONTI 1979, voi. LXVII, fase. 3-4.
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Consequently by (15), (16) and (17) it follows that

I {®»} =  {ynS u  {Zn} is complete in B, with {yn , hn) U {zn , gn}
(18) - «

I biorthogonal system, moreover ( ) [wr̂ \n>m ç  Y 1 — [yn] .
\ m=l : ■

This completes the proof of Theorem I.
We remark that, if in Theorem I is M-basic, then in (18) [/in] is total

00
on [yn]-, therefore, if x e  Ç) [wn]„>m, by (18) hn (x) =  g n (x) =  o \ /k  and

m=1
x e  [y n] , hence x  -- o, that is {w is M-basis of B ([2], see also [7] p. 171), 
consequently we have Theorem III*.

Let us now consider the extension of uniformly minimal sequences. This 
is a more difficult problem than for the minimal sequences; indeed, by exam
ple I, we have already seen that Theorem III* does not keep true, also without 
the condition of {yn} U {2̂ } complete in B. Moreover also the extension by 
an only element presents difficulties for an uniformly minimal sequence, 
indeed

Example I I .  f  has a biorthogonal system {yn , hn}n^  1 with \\yn\\ =  \\hn\\ =  1 
Vn >  I and {yn}n> 1 not complete in lXy so that, i f  {yn ,g n }n>0 is a biorthogonal 
system of 4 ,  it follows that sup | | ^ | |  >  2.

Proof. Let {^w}w>0 be the natural basis of lx and let us set

(19) y n ~  (%n +  )/2. Vn ^  I .

Then V {aX = i c  ^  we have that

(20) x t0 +  ^
( m v m

1 +  X «

m m i l
+  2 . ^  +

-X«

1  2 1 2

By (20) ^ [yn]n>i hence by (19) it follows that

(21) span {x0} and [yn]n> 1 are two complementary subspaces of f  . 

Moreover, \Jm and V c  ^  , by (19) it follows that

y™ +  2 'n(^m)

=  i  +

è  +  X-o  ̂J  +  ^jn(Xm) +  2

1 , v2 I Z j»(+^)"T

2

+ . x1 ^
>  I.

Consequently, by H ahn Banach Theorem, 3 {hl„}n>1ci l'x so that {yn i h ftn> 1 
is a biorthogonal system, with || || ■== || hn || == 1 'in  >  1.
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Let now and {gn}n>o Œ A so that

(22) {yn >gn}n>0 is a biorthogonal system.

By (21) we have that

(23) y 0 =  âx0 +  y , with ä ^ o  and y e  [yn]n>i- 

Let us fix s >  o and let {an}*Œi c: ^  so that

(24) < 2 S  ÖC

By (19), (23) and (24) it follows that

yp+1 ^ 0  — jvhl -(**o “t” ÿ <

< ^ +1 2 + a7J <  A +  2 s I ä —  =  è + s .2 I a I * ' ' 2 I a I

That is inf {inf {\\ym+ y\\ ; y e  span {y^n^n^-o}}  <  J ;  consequently, by (22), 

supll<£mll ^  2. This completes the proof of example II.
m

We shall continue our considerations on the extension of uniformly 
minimal sequences in § 6.

§ 5 . M -b ib a s ic  sy st e m s  a n d  e x t e n s io n  of b io r th o g o n al  sy st e m s

Let us consider a biorthogonal system {y n , of B, we shall say that

(Dx) {y n > is extendible if 3 fo jc :  B and { g ^  c  B' so that { y n , hn} U 
U {zn .,gn} is a biorthogonal system with {y n} U complete in B.

We point lout that 

(25) {yn >^n} is extendible { k ^  is M-basic.

In fact, if Q is the canonical mapping of B into B", in (DO we have that 
{K  , Q (y n)} ^  {gn > Q On)}' is a biorthogonal system of B', with [{Q (y n)} U
U {Q 0 »)}] total on [{K i^ ig n }]-

Moreover we recall that, if (un)  is a minimal sequence not complete in B, 
3 {bn} c  B' so that {yn , hn} is a biorthogonal system, but not extendible ([9] 
p. 184, see also [11] corollary I).

We also point out that, if {yn , hw} is a biorthogonal system, it is possible 
that {h is M-basic and { y ^  not (for example, if {yn} is complete in B but not 
M-basic, by (25)); moreover {y n} can be M-basic and {h not (for example, 
if { y J  n>0 is M-basis of B, with {y n , f n}n>o biorthogonal system, setting 
hn ~ f n +  n \ \ fn \ \ f0 Vn  >  I, we have that {yn , hn}n>r  is a biorthogonal 
system, but {h ^  is not M-basic, because lim hnl\\hn \\ =  /o/ll/oll)-
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Therefore, if {y n , hn} is a biorthogonal system, we shall say that
(D2) {yn , Aw} is M -bibasic if both {yn} and {h n} are M-basic.

By (25) and Theorem III* it follows that every M-basic sequence {yn} 
of B belongs to an M-bibasic system {y n i hn} .

Moreover, by (Dx) and (D2), we shall say that
(D3) {yn , hf$ is M-extendible if is extendible to an M-bibasic system 

complete in B.
By (D3) it is obviuos that an M-extendible system is M-bibasic, but this 

necessary condition is not in general sufficient, indeed:

Example I I I .  c0 has an M-bibasic system which is not extendible.

Proof. Suppose that

(26) {^}^>o is the natural basis of c0y with {xn>fn}n>o biorthogonal system.

Then let us set

(27) K  = f n + / 0 V n >  I .

Suppose that for an x e  c0 ,h n (x) =  o 'in , by (2f) f n (x) =  —/ 0 (x) 'in  >  i ;
CX>

on the other hand by (26) x — ^ n fn  ( f ) x n) hence f n (x) =  o V n >  o, that
0

is x =  o. Consequently \hn] is total on c0, therefore by (26) and (27) it 
follows that

(28) {xn , is a biorthogonal system of cQ but not extendible.

Now c'o is isometric to lly then we can consider { fn}n>0 as the natural basis 
of lly therefore by (19), (20), (26) and (27) it follows that

(29) ! / o f H *

Suppose that

(30) .he .[hn] :w ithh(x^)= = o \ / n >  1.

By (27) and (30) h =  ä f0 +  /  with f e  [ fn]n>ly now / =  o by (26) and (30), 
because h (xf) ~  f ( x f )  for n >  1 and {/»}»>! is M-basic; hence i  =  «/0, that 
is h .= o by (29) and (30), whence [Xfï\n>i is total on \hf\. Therefore {hf$ is 
M-basic, which, by (26) and (28), completes the proof of example III.

Let us give now a few characterizations for (Di), (D2) and (D3).

II. Let {y n ,h n} be a biorthogonal system of B, then

a) 'by ,.*»} ' is extendible 4==> [yn] +  [hn] i is dense in  B.
b) {yn ,K i  is M-bibasic <=» [ynf  fi [hn] = {o} and [>n] n [hn]̂  = {o}.
c) { jn  ) hf$ is M-extendible <==>{yn , hn} is extendible w ith {y n} M-basic 

[yn] and [hf\i are quasi complementary subs paces of B.
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Proof. :

=> is obvious, while 4= follows by Theorem I.

b) It is obviuos.

c) It follows by (25) and by a) and b).

§ 6. O p e n  pro blem s

The main open problem on the extension of uniformly minimal sequen
ces is

Problem I . Let {y be an uniformly minimal M-basic sequence of B, 
does it exist { z^  a  B so that {y n}^{^ n }  becomes an uniformly minimal 
M-basis of B ?

A weaker version of this problem is

Problem 2. Let {yn} be an uniformly minimal M-basic sequence of B, 
does it exist {&n} <= B' so that {yn , k n} becomes a bounded and M-extendible 
biorthogonal system ?

We remark that, if {yn , h n} is a bounded and M-extendible biorthogonal 
system of B and if {nk} and {nf) are two infinite complementary subsequences 
of {n} y by propositions 1 of [5] it follows that both {yn J  and are exten
dible to an uniformly minimal M-basis of B. This raises the following question, 
about a possible equivalence between problems 1 and 2.

Problem 3. Let {y n , hn} be a bounded and M-extendible biorthogonal 
system of B, is {y n} extendible to an uniformly minimal M-basis of B?
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