ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAOLO TERENZI

On bounded and total biorthogonal systems spanning given subspaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **67** (1979), n.3-4, p. 168–178.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1979_8_67_3-4_168_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi matematica. — On bounded and total biorthogonal systems spanning given subspaces. Nota (*) di PAOLO TERENZI (**), presentata dal Socio L. AMERIO.

RIASSUNTO. — Siano Y e Z due sottospazi quasi complementari di uno spazio di Banach separabile B. È noto (Vinokurov) che B ha una M-base unione di una M-base di Y e di una M-base di Z; inoltre è noto (Milman) che, se $\{y_n\}$ è una M-base di Y, esiste una successione $\{z_n\}$ di Z tale che $\{y_n\} \cup \{z_n\}$ sia una M-base di B.

Recentemente Ovsepian-Pelczynski, dando una risposta affermativa ad un problema da lungo tempo irrisolto, hanno dimostrato che B ha sempre una M-base uniformemente minimale.

Tale risultato pone allora la questione se sia possibile estendere alle M-basi uniformemente minimali il Teorema di Vinokurov e quello di Milman. Si dimostra, nel presente lavoro, che tale estensione non è possibile; anzi, se $\{y_n\}$ è una successione completa in Y, si dimostra che in generale non esiste una successione infinita $\{z_n\}$ di Z, tale che $\{y_n\} \cup \{z_n\}$ sia uniformemente minimale, anche nel caso di $\{y_n\}$ basica.

§ I. INTRODUCTION

Notations, definitions and recalls are reported in § 2.

Let Y and Z be two quasi complementary subspaces of a separable Banach space B. It is known (Vinokurov) that B has an M-basis union of an M-basis of Y and of an M-basis of Z; moreover, if $\{y_n\}$ is an M-basis of Y, Milman stated that it is possible to extend $\{y_n\}$ to an M-basis of B by means of a sequence of Z. On the other hand a recent important result of Ovsepian-Pelczynsky stated the existence of an uniformly minimal M-basis for B. This raises the problem if it is possible to extend to the uniformly minimal M-bases the results of Vinokurov and Milman.

Then in § 3 we study if B has an uniformly minimal M-basis, union of an M-basis of Y and of an M-basis of Z, and we find that this is not in general possible; indeed, what's more, we prove that, if $\{y_n\}$ is an uniformly minimal sequence complete in Y, it is not possible in general to have an uniformly minimal sequence $\{y_n\} \cup \{z_n\}$ by means of an infinite sequence of Z. Therefore also Milman's theorem cannot be extended to the uniformly minimal M-bases.

In §4 we are concerned with the extension of minimal and uniformly minimal sequences. In particular we point out that, if $\{y_n, h_n\}_{n\geq 1}$ is a biorthogonal system of B, with $\|y_n\| \cdot \|h_n\| \leq M < +\infty \forall n \geq 1$ and with $\{y_n\}_{n\geq 1}$

^(*) Pervenuta all'Accademia il 27 giugno 1979.

^(**) Istituto di Matematica del Politecnico. Piazza Leonardo da Vinci 32. 20133 Milano.

not complete in B, in general it is not possible to choose $y_0 \in B$ and $\{g_n\}_{n\geq 0} \subset B'$ so that $\{y_n, g_n\}_{n\geq 0}$ is a biorthogonal system, with $\sup\{\|y_n\| \cdot \|g_n\|; n\geq 1\}$ < 2M. We give also a proof of Milman's theorem.

In § 5 we define the M-bibasic systems and we study the extension of biorthogonal systems.

Finally in § 6 we raise a few problems, connected with the above questions.

§ 2. NOTATIONS, DEFINITIONS AND RECALLS

Theorems are enumerated by Roman figures and theorems of recalls by starred Roman figures. We use $\{n\}$ for the sequence of natural numbers, R^+ for the positive real semiaxis, \mathscr{C} for the complex field, B for a separable Banach space and B' for the dual of B.

Let $\{x_n\}$ be a sequence of B, then span $\{x_n\}$ is the linear manifold spanned by $\{x_n\}$, while $[x_n]$ is the closure of span $\{x_n\}$.

Let $\{x_n\} \subset B$, we say that $\{x_n\}$ is:

- a) overfilling if $[x_n] = [x_{n_k}] \forall$ infinite subsequence $\{x_{n_k}\}$ of $\{x_n\}$;
- b) minimal if $x_m \notin [x_n]_{n+m}$, $\forall m$;
- c) uniformly minimal if $\inf_{m} \{\inf \{ \|x_m + x\| ; x \in \operatorname{span} \{x_n\}_{n \neq m} \} \} > 0.$

Let $\{x_n\} \subset B$ and $\{f_n\} \subset B'$, we say that $\{x_n, f_n\}$ is a

d) biorthogonal system if $f_m(x_n) = \delta_{mn} \forall m$ and n;

e) bounded biorthogonal system if $f_m(x_n) = \delta_{mn}$ and $||f_n|| \cdot ||x_n|| \le \le M < +\infty$, $\forall m$ and n.

It is well known ([3] and [2], see also [8] p. 54 and [7] p. 165) that: $\{x_n\}$ (uniformly) minimal $\iff \exists \{f_n\} \subset B'$ with $\{x_n, f_n | [x_k]\}$ (bounded) biorthogonal system.

Let $\{x_n, f_n\}$ be a biorthogonal system, we recall that

f) $\{x_n\}$ is M-basis of B if $[f_n]$ is total on $[x_n]$ (that is $[f_n]_1 \cap [x_n] = \{0\}$, where $[f_n]_1 = \{x \in B ; f_n(x) = 0 \ \forall n\}$) and if $[x_n] = B$;

g) $\{x_n\}$ is basis of B if $x = \sum_{1}^{\infty} f_n(x) x_n \quad \forall x \in B;$

h) $\{x_n\}$ is M-basic (basic) sequence if $\{x_n\}$ is M-basis (basis) of $[x_n]$.

Moreover we say that two subspaces Y and Z of B are *quasi complementary* if $Y \cap Z = \{o\}$ and Y + Z is dense in B.

About the uniformly minimal M-bases we recall

I*. (Pelczynsky [6]) For every $\varepsilon > 0$ B has a total biorthogonal system $\{y_n, h_n\}$ with $\{y_n\}$ complete in B and $||y_n|| \cdot ||h_n|| < 1 + \varepsilon \forall n$.

The same result had been found by Ovsepian-Pelczynski in a preceding Note [5], with the weaker condition that $||y_n|| \cdot ||h_n|| < M < +\infty \forall n$.

About the M-bases spanning given subspaces we recall

II*. (Vinokurov [12], see also [9] p. 187) Let Y and Z be two quasi complementary subspaces of B, then \Rightarrow B has an M-basis union of an M-basis of Y and of an M-basis of Z.

Finally, about the extension of M-bases, we recall

III*. (Milman [4] p. 121). Let Y and Z be two quasi complementary subspaces of B and let $\{y_n\}$ be an M-basis of Y, then \Rightarrow B has an M-basis $\{y_n\} \cup \{z_n\}$, where $\{z_n\}$ is a sequence of Z.

§ 3. UNIFORMLY MINIMAL M-BASES SPANNING GIVEN SUBSPACES

In this paragraph we ask if Theorem II* keeps true for the uniformly minimal M-bases. More generally we consider the following question:

Let Y and Z be two quasi complementary subspaces of B, does it exist an M-basis $\{y_n\}$ of Y which is extendible to an uniformly minimal M-basis of B by means of a sequence of Z?

By next example we solve this question in the negative; then it follows that both Theorems II* and III* cannot be extended.

Example I. \exists a separable Banach space B_1 , with two quasi complementary infinite dimensional subspaces Y and Z, so that, if $\{y_n\}$ and $\{z_n\}$ are two infinite sequences of Y and Z respectively, with $[y_n] = Y$ or with $[z_n] = Z$, then $\{y_n\} \cup \{z_n\}$ cannot be uniformly minimal.

Proof. Let $\{v_n\} \cup \{w_n\}$ be a linearly independent sequence of elements of a linear space and let us set

(I)
$$\left\| \sum_{1}^{m} (\alpha_{n} v_{n} + \beta_{n} w_{n}) \right\| = \sum_{1}^{m} \left(|\alpha_{n} + \beta_{n}| \left(I - \frac{I}{2^{n}} \right) + \frac{|\alpha_{n}| + |\beta_{n}|}{2^{n}} \right),$$
$$\forall \{\alpha_{n}, \beta_{n}\}_{n=1}^{m} \in \mathscr{C}.$$

If $\sum_{1}^{m} (\alpha_n v_n + \beta_n w_n)$ (where some α_n or β_n can be = 0) is the general element of span $\{v_n\}$ + span $\{w_n\}$, $\forall \lambda \cup \{\alpha_n, \alpha'_n, \beta_n, \beta'_n\}_{n=1}^{m} \subset \mathscr{C}$ by (1) it immediately follows that

$$\left\| \sum_{1}^{m} (\alpha_{n} v_{n} + \beta_{n} w_{n}) \right\| = 0 \iff \alpha_{n} = \beta_{n} = 0$$

for $I \le n \le m \iff \sum_{1}^{m} (\alpha_{n} v_{n} + \beta_{n} w_{n}) = 0;$
$$\left\| \sum_{1}^{m} (\lambda \alpha_{n} v_{n} + \lambda \beta_{n} w_{n}) \right\| = |\lambda| \cdot \left\| \sum_{1}^{m} (\alpha_{n} v_{n} + \beta_{n} w_{n}) \right\|;$$

$$\left\| \sum_{1}^{m} (\alpha_{n} v_{n} + \beta_{n} w_{n}) \right\| \le \left\| \sum_{1}^{m} (\alpha_{n} - \alpha'_{n}) v_{n} + (\beta_{n} - \beta'_{n}) w_{n} \right\| + \left\| \sum_{1}^{m} (\alpha'_{n} v_{n} + \beta'_{n} w_{n}) \right\|.$$

Therefore (1) is a norm, hence (we can think $\{v_n\} \cup \{w_n\}$ in $C_{0 \mapsto 1}$) let us set (2) $Y = [v_n]$, $Z = [w_n]$, $B_1 = [\{v_n\} \cup \{w_n\}]$.

Moreover by (I) we have that

$$\left\|\sum_{1}^{m} (\alpha_n v_n + \beta_n w_n)\right\| \geq \sum_{1}^{m} \frac{|\alpha_n| + |\beta_n|}{2^n}, \quad \forall \{\alpha_n, \beta_n\}_{n=1}^m \subset \mathscr{C}.$$

Therefore ([1], see also [8] p. 54) by (1) and (2) we have that

(3) $\begin{cases} \{v_n\} \cup \{w_n\} \text{ is minimal, moreover Y and Z are isometric to } l_1, \\ \text{with } \{v_n\} \text{ natural basis of Y and } \{w_n\} \text{ natural basis of Z.} \\ \text{By (3) it follows that} \end{cases}$

$$x \in Y \cap Z \Rightarrow x = \sum_{1}^{\infty} \alpha_n v_n = \sum_{1}^{\infty} \beta_n w_n \Rightarrow$$
$$\sum_{1}^{\infty} \alpha_n v_n - \beta_n w_n = 0 \Rightarrow \alpha_n = \beta_n = 0 \quad \forall n \Rightarrow x = 0$$

Hence, by (2), Y and Z are two quasi complementary subspaces of B_1 . Let now $\{x_n\} \subseteq B_1$ so that

(4)
$$\begin{cases} \{x_n\} = \{y_n\} \cup \{z_n\}, \text{ with } ||x_n|| = 1 \forall n, \text{ moreover } [y_n] = Y \\ \text{and } \{z_n\} \text{ is an infinite sequence of } Z. \end{cases}$$

Let us fix $\overline{m} \in \{n\}$, we shall prove tha $\exists \overline{n} \in \{n\}$ so that

(5)
$$\inf \{ \| z_{\bar{n}} + x \| ; x \in \operatorname{span} \{ z_n \}_{n + \bar{n}} + \operatorname{span} \{ y_n \} \} < 1/2^m .$$

By (3) and (4) we have that

(6)
$$z_n = \sum_{1}^{\infty} \alpha_{nk} w_k$$
, with $\sum_{1}^{\infty} |\alpha_{nk}| = 1$, $\forall n$.

By (6) $|\alpha_{nk}| \leq I \forall n$ and k; hence \exists an infinite subsequence $\{n_i\}$ of $\{n\}$ so that

$$\lim_{i\to\infty}\alpha_{n_i\,k}=\alpha_k\,,\quad \text{ for }\ 1\leq k\leq \bar{m}+2.$$

Therefore $\exists i \in \{n\}$ so that, setting $n_i = \bar{n}$ and $n_{i+1} = \bar{n} + \bar{p}$, we have that

(7)
$$\sum_{1}^{\overline{m}+2} |\alpha_{\overline{n}k} - \alpha_{\overline{n}+\overline{p},k}| < \frac{1}{2^{\overline{m}+1}}.$$

On the other hand, by (4), span $\{y_n\}$ is dense in Y; consequently by (1), (3), (4), (6) and (7) we have that

$$\inf \{ \| z_{\bar{n}} + x \| ; x \in \operatorname{span} \{ z_{n} \}_{n \neq \bar{n}} + \operatorname{span} \{ y_{n} \} \} \leq \\ \leq \left\| z_{\bar{n}} - z_{\bar{n} + \bar{p}} - \sum_{\bar{m} + 3}^{\infty} \alpha_{\bar{n}k} v_{k} + \sum_{\bar{m} + 3}^{\infty} \alpha_{\bar{n} + \bar{p}, k} v_{k} \right\| = \left\| \sum_{1}^{\bar{m} + 2} (\alpha_{\bar{n}k} - \alpha_{\bar{n} + \bar{p}, k}) w_{k} + \right\| \leq \| v_{n} \| v_{n} \| = \| v_{n} \| v_{n} \| v_{n} \| = \| v_{n} \| v_{n} \| v_{n} \| = \| v_{n} \| v_{n} \| v_{n} \| v_{n} \| = \| v_{n} \| v_$$

$$\begin{split} &+ \sum_{\bar{m}+3}^{\infty} \alpha_{\bar{n}k} \left(w_{k} - v_{k} \right) + \sum_{\bar{m}+3}^{\infty} \alpha_{\bar{n}+\bar{p},k} \left(v_{k} - w_{k} \right) \bigg\| \leq \bigg\| \sum_{1}^{\bar{m}+2} \left(\alpha_{\bar{n}k} - \alpha_{\bar{n}+\bar{p},k} \right) w_{k} \bigg\| + \\ &+ \bigg\| \sum_{\bar{m}+3}^{\infty} \alpha_{\bar{n}k} \left(w_{k} - v_{k} \right) \bigg\| + \bigg\| \sum_{\bar{m}+3}^{\infty} \alpha_{\bar{n}+\bar{p},k} \left(v_{k} - w_{k} \right) \bigg\| = \sum_{1}^{m+2} \left| \alpha_{\bar{n}k} - \alpha_{\bar{n}+\bar{p},k} \right| + \\ &+ \sum_{\bar{m}+3}^{\infty} \left| \frac{\alpha_{\bar{n}k}}{2^{k-1}} + \sum_{\bar{m}+3}^{\infty} \left| \frac{\alpha_{\bar{n}+\bar{p},k}}{2^{k-1}} \right| \leq \frac{1}{2^{\bar{m}+1}} + \frac{1}{2^{\bar{m}+2}} \left(\sum_{\bar{m}+3}^{\infty} \left| \alpha_{\bar{n}k} \right| + \sum_{\bar{m}+3}^{\infty} \left| \alpha_{\bar{n}+\bar{p},k} \right| \right) \leq \\ &\leq \frac{1}{2^{\bar{m}+1}} + \frac{1}{2^{\bar{m}+2}} \left| 2 = \frac{1}{2^{\bar{m}}} \right|. \end{split}$$

That is (5) is proved, consequently $\{x_n\}$ is never uniformly minimal, which completes the proof of example I.

§ 4. EXTENSION OF MINIMAL AND UNIFORMLY MINIMAL SEQUENCES

Firstly we consider the extension of minimal sequences, hence theorem III* of $\S 2$.

It is not possible to improve this theorem, with the further condition of $\{z_n\}$ complete in Z. Indeed, if it is not Y + Z = B, Singer pointed out ([9], p. 186) that \exists a particult M-basis $\{y_n\}$ of Y, so that it is never possible to have $\{z_n\}$ complete in Z. Moreover the author [10] proved that, if Y is an infinite dimensional and codimensional subspace of B and if $\{y_n\}$ is an M-basis of Y, then \exists a subspace Z of B, quasi complementary with Y, so that, in the Banach space B/Z, $\{y_n + Z\}$ is overfilling.

Milman stated Theorem III* without proof. We wish now to give a proof, precisely we prove that

I. Let $\{y_n\}$ be a minimal sequence of B and let Z be a subspace of B quasi complementary with $[y_n]$, then: $\Rightarrow \exists$ a sequence $\{z_n\}$ of Z so that $\{w_n\} = \{y_1, z_1, y_2, z_2, \cdots\}$ is minimal and complete in B, with $\bigcap_{m=1}^{\infty} [w_n]_{n>m} \subseteq [y_n]$.

Proof. Let $\{v_n\} \subset B$ and $\{\varepsilon_n\} \subset \mathbb{R}^+$ so that

(8) $\forall \{u_n\} \subset B$ with $||u_n - v_n|| < \varepsilon_n \forall n$, $\{u_n\}$ is complete in B.

Moreover let us set

 $\mathbf{Y}_n = [\mathbf{y}_k]_{k \ge n}$ and $\mathbf{B}_n = \mathbf{B} / \mathbf{Y}_n$, $\forall n$.

We shall leave out the trivial case of Z finite dimensional subspace of B. By hypothesis $\exists \{x_{1n}\}_{n\geq 1} \subset B$ so that

(9)
$$\{x_{1n} + Y_i\}$$
 is M-basis of B_1 , with $\{x_{1n}\} \subset Z$.

Then $\exists p_1 \in \{n\}$ and $u_1 \in B$ so that

(10)
$$||u_1 - v_1|| < \varepsilon_1$$
, with $u_1 \in \text{span}\{y_n\} + \text{span}\{x_1_n\}_{n=1}^{p_1}$.

By hypothesis and by (9) $\{y_1 + Y_2\} \cup \{x_{1n} + Y_2\}_{n=1}^{\rho_1}$ is a linearly independent sequence of B₂, hence $\exists \{x_{2n}\}_{n\geq 1} \subset B$ so that

(II)
$$\begin{cases} \{y_1 + Y_2\} \cup \{x_{1n} + Y_2\}_{n=1}^{p_1} \cup \{x_{2n} + Y_2\}_{n\geq 1} & \text{is M-basis of } B_2, \\ \text{with } \{x_{2n}\}_{n\geq 1} \subset \text{span } \{x_{1n}\}_{n>p_1}. \end{cases}$$

Then $\exists p_2 \in \{n\}$ and $u_2 \in B$ so that

(12)
$$||u_2 - v_2|| < \varepsilon_2$$
, with $u_2 \in \operatorname{span} \{y_n\} + \sum_{i=1}^{2} \operatorname{span} \{x_{in}\}_{n=1}^{p_i}$.

Now $\{y_n + Y_3\}_{n=1}^2 \cup \{\bigcup_{i=1}^2 \{x_{in} + Y_3\}_{n=1}^{p_i}\}$ is linearly independent in B_3 then we can extend this sequence to an M-basis of B_3 , by means of a sequence $\{x_{3n} + Y_3\}_{n\geq 1}$, with $\{x_{3n}\} \subset \text{span} \{x_{2n}\}_{n>p_2}$.

So proceeding, by (9), (10), (11) and (12) we find $\{x_n\}$ and $\{u_n\}$ in B so that

(13)
$$\begin{cases} \{x_n\} = \bigcup_{i=1}^{\infty} \{x_{in}\}_{n=1}^{p_i}, & \text{where, } \forall m, \\ \{y_n + Y_m\}_{i=1}^{m-1} \cup \left(\bigcup_{i=1}^{m-1} \{x_{in} + Y_m\}_{n=1}^{p_i}\right) \cup \{x_{mn} + Y_n\}_{n \ge 1} & \text{is M-basis of} \\ B_m, & \text{with } \{x_{mn}\}_{n \ge 1} \subset \text{span } \{x_{m-1,n}\}_{n > p_{m-1}}; & \text{moreover, } \forall m, \\ \|u_m - v_m\| < \varepsilon_m & \text{and } \{u_n\}_{n=1}^{m-1} \subset \text{span } \{y_n\} + \sum_{i=1}^{m-1} \text{span } \{x_{in}\}_{n=1}^{p_i}. \end{cases}$$

By (8), (9) and (13) it follows that

(14) $\{y_n\} \cup \{x_n\}$ is complete in B, with $\{x_n\} \subset \mathbb{Z}$.

Moreover by (13), $\forall m$, we have that $y_m \notin [\{y_n\}_{n \neq m} \cup \{x_n\}]$, hence $\exists (h_n] \subset B'$ so that

(15) $\{y_n, k_n\}$ is a biorthogonal system, with $\{x_n\} \subset [k_n]_1$.

By (14) $\exists \{z_n\} \subset B$ so that

(16) $\{z_n + Y_1\}$ is M-basis of B_1 , with $\{z_n\} \subset \text{span}\{x_n\}$.

By (16) $\exists \{G_n\} \subset B'_1$ so that $\{z_n + Y_1, G_n\}$ is a biorthogonal system; therefore, if we set, $\forall n$, $g_n(x) = G_n(x + Y_1) \forall x \in B$, it follows that

(17) $\{z_n, g_n\}$ is a biorthogonal system, with $\{g_n\} \subset Y_1^1$.

12. - RENDICONTI 1979, vol. LXVII, fasc. 3-4.

Consequently by (15), (16) and (17) it follows that

(18) $\begin{cases} \{w_n\} = \{y_n\} \cup \{z_n\} \text{ is complete in } B, \text{ with } \{y_n, h_n\} \cup \{z_n, g_n\} \\ \text{biorthogonal system, moreover} \qquad \bigcap_{m=1}^{\infty} [w_n]_{n > m} \subseteq Y_1 = [y_n]. \end{cases}$

This completes the proof of Theorem I.

We remark that, if in Theorem I $\{y_n\}$ is M-basic, then in (18) $[h_n]$ is total on $[y_n]$; therefore, if $\overline{x} \in \bigcap_{m=1}^{\infty} [w_n]_{n>m}$, by (18) $h_n(\overline{x}) = g_n(\overline{x}) = 0 \forall n$ and $\overline{x} \in [y_n]$, hence $\overline{x} = 0$, that is $\{w_n\}$ is M-basis of B ([2], see also [7] p. 171), consequently we have Theorem III*.

Let us now consider the extension of uniformly minimal sequences. This is a more difficult problem than for the minimal sequences; indeed, by example I, we have already seen that Theorem III* does not keep true, also without the condition of $\{y_n\} \cup \{z_n\}$ complete in B. Moreover also the extension by an only element presents difficulties for an uniformly minimal sequence, indeed

Example II. l_1 has a biorthogonal system $\{y_n, h_n\}_{n\geq 1}$ with $||y_n|| = ||h_n|| = 1$ $\forall n \geq 1$ and $\{y_n\}_{n\geq 1}$ not complete in l_1 , so that, if $\{y_n, g_n\}_{n\geq 0}$ is a biorthogonal system of l_1 , it follows that $\sup ||g_n|| \geq 2$.

Proof. Let $\{x_n\}_{n\geq 0}$ be the natural basis of l_1 and let us set

(19)
$$y_n = (x_n + x_0)/2 \quad \forall n \ge 1.$$

Then $\forall \{\alpha_n\}_{n=1}^m \subset \mathscr{C}$ we have that

(20)
$$\left\| x_0 + \sum_{1}^m \alpha_n y_n \right\| = \left\| x_0 \left(1 + \sum_{1}^m \frac{\alpha_n}{2} \right) + \sum_{1}^m \frac{\alpha_n}{2} x_n \right\| =$$

= $\left| 1 + \sum_{1}^m \frac{\alpha_n}{2} \right| + \sum_{1}^m \frac{|\alpha_n|}{2} \ge 1.$

By (20) $x_0 \notin [y_n]_{n \ge 1}$ hence by (19) it follows that

(21) span $\{x_0\}$ and $[y_n]_{n\geq 1}$ are two complementary subspaces of l_1 . Moreover, $\forall m$ and $\forall \{\alpha_n\}_{n(\pm m)=1}^p \subset \mathscr{C}$, by (19) it follows that

$$\left\| y_m + \sum_{1}^{p} x_{n} y_n \right\| = \left\| x_m \cdot \frac{1}{2} + x_0 \left(\frac{1}{2} + \sum_{1}^{p} x_{n+m} \frac{\alpha_n}{2} \right) + \sum_{1}^{p} x_{n+m} \frac{\alpha_n}{2} x_n \right\| =$$

$$= \frac{1}{2} + \left| \frac{1}{2} + \sum_{1}^{p} x_{n+m} \frac{\alpha_n}{2} \right| + \sum_{1}^{p} x_{n+m} \frac{|\alpha_n|}{2} \ge 1.$$

Consequently, by Hahn Banach Theorem, $\exists \{h_n\}_{n\geq 1} \subset l'_1$ so that $\{y_n, h_n\}_{n\geq 1}$ is a biorthogonal system, with $||y_n|| = ||h_n|| = 1$ $\forall n \geq 1$.

174

Let now $y_0 \in l_1$ and $\{g_n\}_{n \ge 0} \subset l_1'$ so that

(22) $\{y_n, g_n\}_{n\geq 0}$ is a biorthogonal system.

By (21) we have that

(23)
$$y_0 = \bar{\alpha}x_0 + \tilde{y}$$
, with $\bar{\alpha} \neq 0$ and $\tilde{y} \in [y_n]_{n \ge 1}$.

Let us fix $\varepsilon > 0$ and let $\{\alpha_n\}_{n=1}^p \subset \mathscr{C}$ so that

(24)
$$\left\| \tilde{y} - \sum_{1}^{p} \alpha_{n} y_{n} \right\| < 2 \varepsilon | \bar{\alpha} |.$$

By (19), (23) and (24) it follows that

$$\begin{aligned} \left| y_{p+1} - \left(y_0 - \sum_{1}^p \alpha_n y_n \right) \frac{1}{2\bar{\alpha}} \right\| &= \left\| y_{p+1} - \left(\bar{\alpha} x_0 + \tilde{y} - \sum_{1}^p \alpha_n y_n \right) \frac{1}{2\bar{\alpha}} \right\| \le \\ &\le \left\| y_{p+1} - \frac{x_0}{2} \right\| + \left\| \tilde{y} - \sum_{1}^m \alpha_n y_n \right\| \frac{1}{2|\bar{\alpha}|} < \frac{1}{2} + 2\varepsilon |\bar{\alpha}| \frac{1}{2|\bar{\alpha}|} = \frac{1}{2} + \varepsilon. \end{aligned}$$

That is $\inf_{m} \{\inf \{ \|y_m + y\| ; y \in \text{span} \{y_n\}_{n(\neq m)=0}^{\infty} \} \le \frac{1}{2}; \text{ consequently, by (22),}$ $\sup_{m} \|g_m\| \ge 2.$ This completes the proof of example II.

We shall continue our considerations on the extension of uniformly minimal sequences in § 6.

§ 5. M-BIBASIC SYSTEMS AND EXTENSION OF BIORTHOGONAL SYSTEMS

Let us consider a biorthogonal system $\{y_n, h_n\}$ of B, we shall say that $(D_1) \{y_n, h_n\}$ is *extendible* if $\exists \{z_n\} \subset B$ and $\{g_n\} \subset B'$ so that $\{y_n, h_n\} \cup \cup \{z_n, g_n\}$ is a biorthogonal system with $\{y_n\} \cup \{z_n\}$ complete in B.

We point out that

(25) $\{y_n, h_n\}$ is extendible $\Rightarrow \{h_n\}$ is M-basic.

In fact, if Q is the canonical mapping of B into B'', in (D_1) we have that $\{h_n, Q(y_n)\} \cup \{g_n, Q(z_n)\}$ is a biorthogonal system of B', with $[\{Q(y_n)\} \cup \cup \{Q(z_n)\}]$ total on $[\{h_n\} \cup \{g_n\}]$.

Moreover we recall that, if $\{u_n\}$ is a minimal sequence not complete in B, $\exists \{h_n\} \subset B'$ so that $\{y_n, h_n\}$ is a biorthogonal system, but not extendible ([9] p. 184, see also [11] corollary I).

We also point out that, if $\{y_n, h_n\}$ is a biorthogonal system, it is possible that $\{h_n\}$ is M-basic and $\{y_n\}$ not (for example, if $\{y_n\}$ is complete in B but not M-basic, by (25)); moreover $\{y_n\}$ can be M-basic and $\{h_n\}$ not (for example, if $\{y_n\}_{n\geq 0}$ is M-basis of B, with $\{y_n, f_n\}_{n\geq 0}$ biorthogonal system, setting $h_n = f_n + n ||f_n|| f_0 \forall n \geq 1$, we have that $\{y_n, h_n\}_{n\geq 1}$ is a biorthogonal system, but $\{h_n\}$ is not M-basic, because $\lim_{n\to\infty} h_n/||h_n|| = f_0/||f_0||$).

Therefore, if $\{y_n, h_n\}$ is a biorthogonal system, we shall say that

(D₂) $\{y_n, h_n\}$ is M-bibasic if both $\{y_n\}$ and $\{h_n\}$ are M-basic.

By (25) and Theorem III* it follows that every M-basic sequence $\{y_n\}$ of B belongs to an M-bibasic system $\{y_n, h_n\}$.

Moreover, by (D_1) and (D_2) , we shall say that

 (D_3) { y_n , h_n } is M-extendible if is extendible to an M-bibasic system complete in B.

By (D_3) it is obviuos that an M-extendible system is M-bibasic, but this necessary condition is not in general sufficient, indeed:

Example III. co has an M-bibasic system which is not extendible.

Proof. Suppose that

(26) $\{x_n\}_{n\geq 0}$ is the natural basis of c_0 , with $\{x_n, f_n\}_{n\geq 0}$ biorthogonal system. Then let us set

$$h_n = f_n + f_0 \qquad \forall n \ge \mathbf{I}$$

Suppose that for an $\overline{x} \in c_0$, $h_n(\overline{x}) = 0 \forall n$, by (27) $f_n(\overline{x}) = -f_0(\overline{x}) \forall n \ge 1$; on the other hand by (26) $\overline{x} = \sum_{0}^{\infty} f_n(\overline{x}) x_n$, hence $f_n(\overline{x}) = 0 \forall n \ge 0$, that is $\overline{x} = 0$. Consequently $[h_n]$ is total on c_0 , therefore by (26) and (27) it follows that

(28) $\{x_n, h_n\}_{n\geq 1}$ is a biorthogonal system of c_0 but not extendible.

Now c'_0 is isometric to l_1 , then we can consider $\{f_n\}_{n\geq 0}$ as the natural basis of l_1 , therefore by (19), (20), (26) and (27) it follows that

 $(29) f_0 \notin [h_n].$

Suppose that

(30)
$$\tilde{h} \in [h_n]$$
 with $\tilde{h}(x_n) = 0 \quad \forall n \ge 1$.

By (27) and (30) $\bar{h} = \bar{\alpha}f_0 + \bar{f}$ with $\bar{f} \in [f_n]_{n \ge 1}$; now $\bar{f} = 0$ by (26) and (30), because $\bar{h}(x_n) = \bar{f}(x_n)$ for $n \ge 1$ and $\{f_n\}_{n \ge 1}$ is M-basic; hence $\bar{h} = \bar{\alpha}f_0$, that is $\bar{h} = 0$ by (29) and (30), whence $[x_n]_{n \ge 1}$ is total on $[h_n]$. Therefore $\{h_n\}$ is M-basic, which, by (26) and (28), completes the proof of example III.

Let us give now a few characterizations for (D_1) , (D_2) and (D_3) .

II. Let $\{y_n, h_n\}$ be a biorthogonal system of B, then

- a) $\{y_n, h_n\}$ is extendible $\iff [y_n] + [h_n]_1$ is dense in B.
- b) $\{y_n, h_n\}$ is M-bibasic $\iff [y_n]^1 \cap [h_n] = \{0\}$ and $[y_n] \cap [h_n]_1 = \{0\}$.

c) $\{y_n, h_n\}$ is M-extendible $\iff \{y_n, h_n\}$ is extendible with $\{y_n\}$ M-basic $\iff [y_n]$ and $[h_n]_1$ are quasi complementary subspaces of B.

Proof .:

a) \Rightarrow is obvious, while \Leftarrow follows by Theorem I.

b) It is obviuos.

c) It follows by (25) and by a) and b).

§ 6. OPEN PROBLEMS

The main open problem on the extension of uniformly minimal sequences is

Problem 1. Let $\{y_n\}$ be an uniformly minimal M-basic sequence of B, does it exist $\{z_n\} \subset B$ so that $\{y_n\} \cup \{z_n\}$ becomes an uniformly minimal M-basis of B?

A weaker version of this problem is

Problem 2. Let $\{y_n\}$ be an uniformly minimal M-basic sequence of B, does it exist $\{h_n\} \subset B'$ so that $\{y_n, h_n\}$ becomes a bounded and M-extendible biorthogonal system?

We remark that, if $\{y_n, h_n\}$ is a bounded and M-extendible biorthogonal system of B and if $\{n_k\}$ and $\{n'_k\}$ are two infinite complementary subsequences of $\{n\}$, by propositions I of [5] it follows that both $\{y_n\}$ and $\{y_{n'k}\}$ are extendible to an uniformly minimal M-basis of B. This raises the following question, about a possible equivalence between problems I and 2.

Problem 3. Let $\{y_n, h_n\}$ be a bounded and M-extendible biorthogonal system of B, is $\{y_n\}$ extendible to an uniformly minimal M-basis of B?

BIBLIOGRAPHY

- [1] C. FOIAS and I. SINGER (1961) Some remarks on strongly linearly independent sequences and bases in Banach spaces, «Rev. Math. pures et appl.», 61, 589-594.
- [2] M.M. GRINBLIUM (1945) Biorthogonal systems in Banach spaces, «Doklady Akad. Nauk SSSR», 47, 75-78.
- [3] A. MARKUSCHEVICH (1943) Sur les bases (au sens large) dans les espaces linéaires, «Doklady Akad. Nauk SSSR», 41, 227–229.
- [4] V. D. MILMAN (1970) Geometric Theory of Banach Spaces. Part I. « Russian Mathematical Surveys », 25, 111-170.
- [5] R. I. OVSEPIAN and A. PELCZYNSKI (1975) On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L², «St. Math.», 54, 149-159.
- [6] A. PELCZYNSKI (1976) All separable Banach spaces admit for every $\varepsilon > 0$ fundamental total and bounded by $1 + \varepsilon$ biorthogonal sequences, «St. Math.», 55, 295–304.
- [7] I. SINGER (1964) Baze in spatii Banach II, «Studii si Cercetari Matematice», 15, 157-208.

[8] I. SINGER (1970) - Bases in Banach Spaces I. Springer-Verlag.

- [9] I. SINGER (1971) On Biorthogonal Systems and Total Sequences of Functionals, «Math. Ann. », 193, 183-188.
- [10] P. TERENZI (1977) Properties of structure and completeness, in a Banach Space, of the sequences without an infinite minimal subsequence, «Istituto Lombardo (Rend. Sc.)», 112, 47-66.
- [11] P. TERENZI (1978) Biorthogonal systems in Banach spaces, «Riv. Mat. Univ. Parma (4) 4, 165-204.
- [12] V. S. VINOKUROV (1952) On biorthogonal systems spanning given subspaces, «Dokl. Akad. Nauk SSSR», 685-689.