bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Lanteri, Antonio and Palleschi, Marino:
Sulle rigate ellittiche
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Serie 8 67 (1979), fasc. n.1-2, p. 87-94, (Italian)
pdf (446 Kb), djvu (627 Kb). | Zbl 0474.14019

Sunto

Let $X \subset \mathbf{P}^{r}$ be a complex smooth algebraic surface, the general hyperplane section of which is an elliptic curve. A classical Theorem due to G. Castelnuovo ([1]) states that if $X$ is not an elliptic scroll then $X$ is a rational surface. Castelnuovo achieves this result by showing that if $X$ is not a scroll, then a suitable linear system of hypersurfaces in $\mathbf{P}^{r}$ exhibits $X$ as a projective model of a surface of degree $d$ in $\mathbf{P}^{d}$, which is not a scroll; hence $X$ is rational. In this paper we supply a new proof of the previous result (Teorema 3.1) (over an algebraically closed field). This proof allows us to describe, in the class of the (smooth) linearly normal surfaces, the elliptic scrolls as the surfaces of degree $d$ in $\mathbf{P}^{d-1}$ with elliptic general hyperplane section. Our argument is supported by the following fact (Proposizione 3.1): let $\rho:S\rightarrow Y \subset \mathbf{P}^{r-1}$ be the projection of a smooth surface $S \subset \mathbf{P}^{r}$ from a point $p \in S$; if $Y$ is a (smooth) scroll then either $S$ is a rational surface or $S$ itself is a scroll. In the latter case $\rho$ is an elementary transformation with center $p$; hence the elementary transformations, introduced by Nagata in [5], can be seen as projections. Finally we give an explicit description of projective models of the elliptic scrolls. This construction generalizes the one given in [3] for the elliptic scroll in $\mathbf{P}^{4}$ and shows the links between the degree, the invariant and the hyperplane class of such surfaces.
Referenze Bibliografiche
[1] G. Castelnuovo (1894) - Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. «Rend. Accad. Naz. Lincei» (5) 3, 229-232. | MR 330515
[2] R. HartShorne (1977) - Algebraic Geometry. Springer Verlag, Berlin-Heidelberg-New York. | Zbl 0367.14001
[3] A. Lanteri e M. Palleschi (1978) - Osservazioni sulla rigata geometrica ellittica di $\mathbf{P}^{4}$. «Istituto Lombardo (Rend. Sc.)», A 112, 223-233. | MR 463157
[4] A. Lanteri e M. Palleschi (1979) - Sulle superfici di grado piccolo in $\mathbf{P}^{4}$. «Istituto Lombardo (Rend. Sc.)», A 113 (in corso di stampa).
[5] M. Nagata (1960) - On rational surfaces I. «Mem. Coll. Sci. Kyoto» (A) 32, 351-370.
[6] M. Nagata (1970) - On self-intersection number of a section on a ruled surface. «Nagoya Math. J.», 37 191-196. | MR 126444
[7] I.R. Shafarevich e altri (1965) - Algebraic Surfaces. «Proc. Steklov Inst. Math.», 75 (trad. «Amer. Math. Soc.», 1967). | MR 258829

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali