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Equazioni a derivate parziali. — Moving Finite Elements for  
the Stefan problem in two dimensions. N ota<#) di R oger A lexan­
d e r ^ ,  Paolo M an selli ((*) (**) ***> e K eith M iller <****>, presentata dal 
Socio G. S ansone.

R iassunto. — La presente è una Nota introduttiva sulla estensione del metodo degli 
Elementi Finiti Mobili a problemi con due dimensioni spaziali. Tale metodo numerico è stato 
sviluppato specificamente per trattare equazioni a derivate parziali non lineari le cui soluzioni 
sviluppano automaticamente onde d’urto. Nel presente lavoro tale metodo è applicato al 
problema di Stefan in due dimensioni spaziali.

i. Introduction

In this Note we sketch the first extension of the Moving Finite Element 
method to problems in two space dimensions, with the Stefan problem for a 
melting ice front as our trial example. The M FE method (applied previously 
with great success to many i-dimensional parabolic and hyperbolic problems) 
was developed specifically to handle the many important strongly nonlinear 
partial differential equations whose solutions automatically develop “ shocks ” 
“ near shocks ” , or other critical moving regions with steep gradients. These 
moving node methods were introduced by K Miller and R, Miller in [5], 
with Burger’s equation in i-d as the trial example, and further developed 
and improve^ by K. Miller in [6], with a variety of hyperbolic and parabolic 
equations in i-d (including the Stefan problem) as the trial examples. Such 
methods are presently under development for rather general systems of PD E’s 
in i-d including the equations of gasdynamics and combustion.

In 2-d our finite element space consists of the piecewise linear functions 
on a triangular mesh with moveable nodes (because of the great complexity 
of an M FE code we have not wanted to deal with the obvious extensions to 
higer order finite element spaces). The 2-d method is far more complex,
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both in theory and in computational organization, than the i-d method, but 
our preliminary computational experience is that it works quite well. The 
nodes do automatically concentrate in the shocklike regions as needed and 
move with the shocks. The paramenters do settle down to become fairly 
smooth functions of t and our implicit stiff ODE solver then allows large time 
steps At as desired.

Our trial partial differential equation is the nonlinear equation for the 
Stefan problem in (slightly “ smeared out ”) enthalpy form:

(0  !'t =  L (I') =  ( î ( î,i  +  (9 (!' ) ) r

Here z/ (x , y  , t) denotes the enthalpy in the medium and 9 (v) the corresponding 
temperature. Ideally, we should have the limiting case of cp'(v) — o in the 
“ mush ” region (— 1 <  v <  1) and 9' (v) =  1 in the water region (v >  1) 
or in the ice region (v <  — 1); however, as is usual in theoretical studies and 
in computational practice we smooth out the 9 (v) curve somewhat, such that 
has smooth corners and that 9 ' (v) remains somewhat positive ( >  8 >  o) 
even in the mush region. This serves to smear out the infinitely thin — 1 
to +  1 shock in v to a nonzero o (8) thickness.

The numerical difficulty with standard finite difference or finite element 
methods applied to enthalpy form (1), see Meyer [3] for example, is that § 
must often be set sufficiently high to smear the shock over several mesh widths 
in order to ensure decent numerical behaviour. But, since too large a 8 can 
significantly change the global behaviour of the solution, this method will 
often require an extremely high nodal resolution. Bonnerot and Jamet [2] 
have introduced certain finite element < methods with moving nodes for the 
Stefan problem. These methods require that the ice-water interface be essen­
tially the graph of a function y  — y  (x)\ the nodes on the interface are allowed 
to move only in vertical direction in order to satisfy a Stefan interface conditon, 
and fhe other nodes follow along proportionately.

Our method, on the other hand, is more general and flexible; it allows 
the solution to seek out a general interface; the ice region can even annihilate 
itself, melt in two, and otherwise change topological type. We should point 
out that we could rather easily build into our method an absolute — 1 to +  1 
enthalpy shock across certain prespecified triangle edges and such a method, 
closer in spirit to the Bonnerot and Jamet method, would probably be more 
efficient than our present method (so long as the ice region does not try  to 
change topological type). To dwell on such a highly particular scheme 
for the Stefan problem, however, would miss the point of great generality 
and topological flexibility of our M FE methods and their promise for a wide 
variety of im portant and difficult equations.
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2. O u t l in e  of t h e  M e th o d

For simplicity we restrict ourselves to a rectangular spatial region Q, 
with Dirichlet initial and boundary conditions. Our approximant u to the 
true solution v is a continuous piecewise linear function on a hexagonally 
connected triangulation of Q, with both the amplitude dj(t) and the position 
(Xj (t) , y  j (t)) at its j -th interior node being variable and unknown, j  =  i • • •, N. 
These three values at the boundary nodes are given and (again, merely 
for simplicity) fixed. Since the initial function u0 and the boundary function 
g  will have to be well approximated by piecewise linear functions on Q 
and 3£i, we assume that they are already of that form. We derive ordinary 
differential equations for (dj  , Xj , ÿj} in terms of {aj , Xj , yj} by requiring 
that ù (which depends linearly on the {dj iXjyÿj})  be that element which 
(formally) minimizes the L2 (Q) norm \\û — L (u) ||2 .

There are difficulties with degeneracies of the parametrization, but these 
are handled by regularization techniques involving slight “ intratriangular 
viscosities and spring forces ” on the triangles of the grid. Thus, we instead 
choose {dj , Xj , ÿj} so as to (formally) minimize:

(2) 4» =  II « -  L (u) II2 +  S (s (4 ) - /  (dk) f

where the sum is over all possible interior heights dk of the triangles of the 
grid, z(d)  is a small “ intratriangular viscosity function” and f ( d )  is a 
small “ intratriangular spring function” .

The canonical equations for (formally) minimizing ^ in (2) can be obtained 
by taking the partials of ^ with respect to the unknowns { d j , iy , y 3]  and 
setting these equal zero. Since the canonical equations for minimizing the sum 
of the two terms in (2) is just the sum of the canonical equations for the two 
terms separately, for sake of simplicity let us just discuss the canonical equa­
tions for th e 1 first term \ \ u — L (u) ||2 in (2). The equations for the second 
term will be analogous and much simpler. Notice that by the chain rule

(3)
N

« =  2  d ij=1
du
daj +

du . . du------ b Vi —dXj dy j

N
-  S  àjtf +  t j p  +  ÿj y .

.5=1

Here a few diagrams would be helpful to visualize the form of the functions 
— du/daj , ß*' =  du/dxj , yj — dujdyj . Taking tiny increments in a$ , or Xj , 

or yj ,  one sees that all three functions are piecewise linear functions having 
their support in the hexagon of six triangles surrounding the j -th node. 
Here a-7’ is continuous and takes on the value 1 at the center of the hexagon 
and o at the other nodes. The function ß7 on the other hand is discontinuous 
at the center and on the inner edges of the hexagon; it is = 0  on the hexagonal 
boundary and takes on the six different values of — ux (the constant value 
of dujdx on each triangle) at the central vertices of the six triangles; y7 is similar 
but with the six values of — uy instead.



6o Lincei -  Rend. Sc. fis. mat. e nat. -  Vol. LXVII -  Ferie 1979

The desired canonical equations (ignoring the regularization terms in 
(2)) then become that u%— L (u) — u t — A 9 must be orthogonal to all the 
basis functions a*, ß*, y* i that is:

2  (a? , oc4) àj  +  (ß4 , oc4) ^  +  (y4 , a4) =  (L (u) , oc4)
Ò

(4) S  (ai > ß4) ä) +  (ßJ’ > ß*) +  (y5' . ß*) ÿj  — (L (u) > ß4)

S  (V , t )  à i +  (ß*. Y4) -% +  (Yj . Y4) ÿj  =  (L '(«) , y4)

for ail i =  1 ,'•••, N.
In this way we obtain a system of 3 N ordinary differential equations of 

the form:

(5) C ( z ) i  =  g(z)

where z (t) is the vector of unknown parameters and the “ mass matrix ” 
C (2) is symmetric and positive definite.

3. N u m e r ic a l  s o l u t i o n  o f  t h e  OD E’s

This quite stiff system has been solved by using the high order accurate 
DI RK  (diagonally implicit Runge-Kutta) package of the first author (see 
Alexander [1] and Miller [4]). This package has an automatic stepsize changer 
(depending on an estimation of the local truncation error) which allows the 
time step A  ̂ to increase to large values when the aj (f) , Xj (f) , y$ (t) settle 
down to become very smooth functions of t .

D IRK , like most implicit ODE solvers, can be considered to be a succession 
of basic backward Cauchy-Euler (BCE) steps interspersed with interpolations 
and extrapolations. A single BCE step involves replacing z  in (5) by the 
backward difference (z — 2)/At, where z is a known past value and z  is the 
unknown future value. One is thus left with the implicit equations

(6) K ^ ^ C ( z ) ( z - z ) I A t ) - ~ g (z) =  o .

The formulation and organization of the computer code to solve these implicit 
equations is quite a massive and interesting task in itself; the inner products 
(Acp , ß*), etc. can be evaluated exactly and the contributions to the residual 
vector R (si) can be built up triangle by triangle and edge by edge. It is not 
possible however, to go into the further details in this short note.

Our FORTRAN program, developed and run on the CDC 7600 of Law­
rence Berkeley Labs, has been tried out on several small to moderate sized 
test examples. The program could use some major (and fairly difficult to 
program) improvements for the sake of greater computational efficiency, 
but the results so far have still been quite gratifying.
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As mentioned in the introduction, the nodes do move with the shock 
as needed and the h j  does increase to decently large values. Moreover, the 
method does allow the ice region to change topological type; in one trial run 
the ice (initially in a dumbell shaped form) quite succesfully and routinely 
melts into two pieces.

The present note is a short and schematic presentation of the method 
and preview of the results obtained; for fuller details on the method, with 
descriptions and diagrams of the computer runs, we refer to a forthcoming 
paper in the writeup stage.
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