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Analisi funzionale. — On the existence of an unbounded connected 
set of solutions fo r  nonlinear equations in Banach spaces. Nota <* (**)> 
di Massimo F uri e Maria Patrizia Per a ("V presentata dal 
Socio G. S ansone.

R iassunto. — Sia / :  E —> F un’applicazione continua fra spazi di Banach. Nel pre
sente lavoro si danno delle condizioni su /affinchè l’equazione f ( x )  =  o ammetta una com
ponente connessa non limitata di soluzioni. A tale scopo si introducono le nozioni di appli
cazione o-regolare e di applicazione o-regolarizzabile. I risultati astratti sono infine applicati 
ad alcuni problemi ai limiti per equazioni differenziali a derivate parziali ed ordinarie.

o. In t r o d u c t io n

Let /  : E -> F be a continuous map from a Banach space E into a Banach 
space F. The purpose of this paper is to investigate, under suitable assum
ptions o n / ,  the s e t / “1 (o) of solutions of the equations f ( x )  =  0. In particular 
we give conditions o n /w h ic h  ensure that the s e t / -1 (o) contains an unbounded 
connected component. To this aim we introduce the notion of o-regularizable 
(zero-regularizable) map, which turns out to be a suitable nonlinear extension 
of the notion of bounded linear surjective operator. All the proofs given in 
this paper avoid degree arguments and are mainly based on the very elementary 
theory of o-epi maps introduced in [2] and, consequently, on the most import- 
tant “ existence to o l” for nonlinear operator equations in Banach spaces: 
Schauder’s fixed point theorem.

As far â s we know only few papers contain results in this (or similar) 
direction and all of them are . based on degree theory (see e.g. [1] , 
[3], [5])-

I. D e f in it io n s  a n d  p r e l im in a r y  r e su lt s

Let E , F be real Banach spaces and let X be a subset of E. A continuous 
map g  : X -> F is said to be compact if it maps bounded sets of X into rela
tively compact subsets of F and is said to be proper if (K) is compact for 
every compact subset K c  F. It is easy to see that a proper map sends closed 
sets of X into closed sets of F. Moreover, if g  : X —► F is proper and h : X F

(*) Pervenuta all’Accademia il 17 luglio 1979.
(**) Univ. di Firenze -  Istituto Matematico «U. Dini » -  Viale Morgagni 67/A -  50134 

Firenze.
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is such that h (X) is compact, then g  +  h is proper. In particular, if g  : X F 
is proper on bounded closed sets of X and h : X —> F is compact, then g  +  h 
is proper on bounded closed sets of X. Furthermore it is known that a bounded 
linear operator L : E -> F is proper on bounded closed sets of E if and only 
if dim Ker L <  +  00 and Im  L =  Im  L.

Let us consider now an open subset U c  E and a continuous map 
/ :  U -> F. We say th a t/  is p-admissible (fi e F) if f ~ x(p) is a bounded subset 
of U. Recall (see [2]) that a ^-admissible map is called ^>-epi if the equation 
f  (pc) — p  =  h (x) has a solution in U for any compact map h : U —> F with 
bounded support and such that h (x) =  o for all x  e 3U. It follows immediately 
that, if /  is ^-epi, then the equation f  (x) =  p  is solvable in U.

We say that a continuous map H : U X [o , i ] - > F  is a o-homotopy if
a) the set S =  {xe  U  : H (x , X) =  o for some Xe [o , 1]} is a bounded 

subset of U ,
b) the map (x , X) H (x , X) — H (x , o) from U X [o , 1 ] into F is 

compact.
Moreover, f , g :  U -> F are said to be o-homotopic if there exists a 

o-homotopy H : U X  [o , 1] -* F  joining them (i.e. H (• , o) = / ,  H (• , 1) — g).
The following theorems concerning o-epi maps will be useful in the sequel 

(see [2]).

T h e o r e m  i . i .  (homotopy property). Let f , g :  U —* F be o-homotopic. 
Then f  and g  are either both o-epi or both not o-epi.

THEOREM 1.2. (normalization property). Let f  : U  —> F  be continuous, 
injective and proper. Assume that f  (U) is open. Then f  is p-epi i f  and only 
i f  p e f ( V ) .

T h e o r e m  1.3. (localization property). Let /  : U  —> F be o-epi and let V 
be an open subset of U containing f~ x (0). Then f  | V is o-epi.

{
2. o-R e g u l a r  a n d  o-r e g u l a r iz a b l e  m a ps

Let U be an open subset of E and let / :  U -> F be a continuous map. 
We say that /  is 0-regular i f  it is o-epi and proper on bounded closed subsets 
of Ü.

We introduce the following

D e f i n i t i o n  2.1 L e t f \  U —*F be continuous. Assume that there exists 
a continuous map 9 : U —> G , G Banach space> such that

i) fo r  any bounded subset A c U , < p  (A) is bounded in  G
ii) the map g  — ( / ,  9) : U F x G  defined by g(x)  — ( f ( x )  , 9 (x)) is 

o-regular; then we say that f  is o-regularizable (by 9) ori equivalently, that the 
map 9 0-regularizes f .

Clearly, /  is o-regular if and only if it is o-regularizable by the trivial 
map 9 : U -* {0}.
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If /  is o-regularizable and not o-epi, then /  is called nontrivially o-regula- 
rizable. As we remarked above, if /  is nontrivially o-regulatizable, then 
necessarly, we have G /  {o}.

Finally a o-regularizable map / :  U  —* F is o-regular if and only if /  is 
o-admissible and proper on bounded closed subsets of U. Indeed, if /  is 
o-regular, then by definition is it o-admissible and proper. Conversely, since 
/  is o-regularizable, there exists cp : U -> G such that ( / ,  9) : U -> F X G is 
o-regular. Let h : U —>• F be a compact map with bounded support, h (x) =  o 
for all x e  SU. Clearly the equation ( f ( x )  , 9 (x)) — (h (x) , o) is solvable in 
U, and this implies, in particular, that /  is o-epi.

The following result is related with the study of the solution-set of some 
types of differential equations, as we will show in the examples of section 4.

Theorem 2.1. Let f  : U -> F be nontrivially o-regularizable by 9 : U —> G. 
Then there exists a connected component 2  of f~ x (o) intersecting 9“1 (o) and  
verifying at least one of the following two conditions'.

a) 2  is unbounded; '
b) 2 O 9U / 0  .

The following Lemma will be used in the proof of Theorem 2.1.

Lemma 2.1. (see [6]) Let X be a compact metric space and let A and  B
be closed disjoint subsets of X. Then either there exists a component 
of X which connects A and  B, or there exist two closed sets X A and  Xb 
containing A and  B respectively and such that X a O X b  =  0  , Xa U X b =  X.

Proof of Theorem 2.1. Denote by S the solution-set of the equation f ( x )  =  o 
and observe that S0 =  SD  9“1 (o) =  ( / ,  9)“1 (0 ,0)  is a compact subset of U. 
We shall consider two cases: (A) the set U is bounded; (B) the set U is 
unbounded.

(A) The çet U is bounded. Assume prelim inary that f  is proper. Let 
Sj =  SO  9U; we will show that 0 .  Since G / { o } ,  there exists z0e G , 
z0 o. For all t e  R define g t (x) — ( f ( x )  , 9 (x) — tz0). From the bounded
ness of 9 (U) in G we get that there exists te  R such that iz0$ 9 (U); hence 
gì (x) #  (o , 0) for all xG U. Consequently, there exists 0̂e] o , l[  such that 
the equation gtQ (x) =  (o , o) is solvable on 9U. In fact, if this is not the case, 
we have g t (x) ^ ( 0 , 0 )  for all x e  3U and t e \ o i t[; thus Th. 1.1 implies 
that gi is o-epi, contradicting g t (x) f  (o , o) for all x e \ 5. Therefore, in 
particular f ( x )  =  o has a solution on 3U , i.e. 0 .

We are now able to apply Lemma 2 1 to S0 and SA which are closed disjoint 
subsets of the compact metric space S =  / -1 (o) (recall that /  is assumed to 
be proper). If it does not exist a component of S connecting S0 with Slf  then 
by Lemma 2.1 one can find F 0 and Flv closed subsets of S (and hence closed 
subsets of U), such that F0 =>S0 , F ^ S j , Fon  F1 =  0 , F0 U Ft =  S.

Thus, there exists an open neighborhood V 0 of F 0 in U such that
v on F 1 =  0 .  3

3. — RENDICONTI 1979, voi. LXVII, fase. 1-2.
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Therefore, as above, the equation f  (x) — o has a solution x e  3V0 (observe 
that V 0 =>S0 and so, by the localization property of o-epi maps, ( / ,  9) is o-regu- 
lar on V0). Since x e  S, we have x e  3V0D S =  (3V0n  F 0) U (3V0n  Fj) =  0 .

A contradiction. Thus, we can find a component 2  of S which connects 
S0 and 3U.

Let us remove now the assumption that /  is proper on U In order to do 
this, let Gx be a i-codimensional subspace of G; so G =  G1 © R ^0 , x 0 $ Gx 
and 9 =  (91,9 2) :U  ^ G i X R ^ .  Terefore /  — ( / ,9 i )  :U  - ^ F x G j  is o-regu- 
larizable. Moreover, since ( / ,  o) =  ( / ,  92) — (o , 92) with ( / ,  92) proper and 
(o , 92) compact, then /  is a proper map. Consequently, by the previous 
argument, there exists a connected component of f ~ l (o , o) intersecting both 
S0 and 3U. Thus, the same is true f o r / -1 (o) 3  / -1 (o , o).

(B) The set U is unbounded. Let n0e N be such that the open ball centered 
at the origin with radius nQ contains S0. By (A) and the localization property 
of o-epi maps (see Theorem 3.1), it follows that for any n >  n0 there exists 
x ne S 0 and a component 2 n<= S such that 2 n connects x n with 3 (B(o, U)c= 
c; 3B ( o , n ) U d U .  By the compactness of S0, the sequence {xn} has a 
cluster point x e S 0. Assume now that the connected component 2  of S con
taining x does not intersect 3U. We want to prove that 2  is unbounded. Assume 
the contrary. Let D be an open bounded sùbset of U such that D =>2 U S 0. 
By (A) we get that S D 3D ^  0 ; thus {x} and S O 3D are two closed disjoint 
subsets of S O D which, by assumption, cannot ìbe connected by a component 
qf S. Therefore, by Lemma 2.1, there exists an open neighborhood V0 of x  
in D such that 3V0D S — 0 . On the other hand there exists n >  n0 such that 
xße V 0 and B (o , n) => D. Consequently the connected set 2  ̂ intersects both 
V0 and E \ V 0. Hence wre get 2 „ D 3V0 ^  0 , contradicting the fact S D 3V0 =  0 .

Q.E.D.

Notice that the assertion of Theorem 2.1 is true even under the appa
rently weaker assumption that there exists a Banach space G ^  {0} such that 
( / , 9 ) : U - > F  X G is o-regular. On the other hand, taking into account what 
we observed at the beginning of this section we get the following.

COROLLARY 2.1. A  map /  : U  —> F  is nontrivially o-regularizable i f  and 
only i f  f  is o-regularizable by a map 9 : U ->G  with G ^  {0} .

Theorems 2.2 and 2.3 below are easy consequences of analogous results 
proved in [2] for o-epi maps.

T h e o r e m  2.2. (Perturbation theorem). Let f  \ U —>F be o-regularizable
and assume that U is bounded. Let h : U X [ 0 ,1]  —> F be compact and such that 
h (x , o) =  o fo r  any i e U .  Then there exists z >  o such tha t/ ( • )  — h (• . X) 
is o-regularizable fo r  every | X | <  e.
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Theorem 2.3. (Continuation principle). Let f  : U —> F be o-regularizable 
and let h : U X [o , 1] F be compact and such that h (x , o) =  o fo r  any ^ e U .  
Assume that there exists a map cp : U  —>G which o-regularizes f  and such that 
the set S<p =  {xe  9“1 (o) : f ( x ) = h ( x , 7C) fo r  some Xe [o , 1 ]} is bounded and 
does not intersect 3U; then f — h (• ,1 ) is o-regularizable (by 9).

It is well known that a multivalued map g  : X -> Y , X and Y metric 
spaces, is upper semicontinuous if and only if

i) the graph of g  is closed in X x Y
ii) g  sends compact sets into relatively compact sets.

Using this fact and Theorem 1.1 of [2] we get the following.

THEOREM 2.4. L e t f \  U —>F be o-regular. Then there exists a neighborhood 
V of the origin in  F such that f  (U) ^  V. Moreover the multivalued map 
f~ x : V —>U, defined by f~ x (y) =  { j e U  : f  (x) = y } , is upper semicontinuous 
with compact values. In  particular, i f  f  is injective, then f~ x is continuous.

3. N onlinear perturbation of linear operators

Let L : E F be a bounded linear operator. In the context of linear 
operators we have the following characterizations of o-regular and o-regu- 
larizable maps:

THEOREM 3.1. (see [2]). A  bounded linear operator L : E F is o-regular 
i f  and only i f  it is an isomorphism.

Theorem 3.2. A  bounded linear operator L : E -> F is o-regularizable i f  
and only i f  it is onto.

Proof {Only if). From the hypothesis it follows that there exists 9 : E -> G 
such that the map g  — (L , 9) : E -* F x G is o-regular. Suppose L not onto 
and take p é  F such that L-1 (p) — 0 . We have L -1 Çkp) — 0 for every 
Xe] o , 1] and, consequently, g~x (fkp , o))'<z L~l (fip) — 0  for all Xe] 0 ,1].  
Moreover, being g  o-admissible, we get that'^r"1 ( (0 , 0)) is bounded. Thus the 
set S == { x e  E \ g ( x )  =  Çkp , o) for some X e [o , 1]} is bounded. Hence, 
by the homotopy property for o-epi maps (see Theorem 1.1), we get that 
g  (x) =  (p , o) has a solution in E.

(If). By Michael’s selection theorem [4] there exists a continuous map 
: F E  such that s (y) e L-1 (y) for any y e F  and || «r (y) ||e ^ M  \\y ||f for 

some M >  o. Let 9 : E E be defined by 9 (x) — x — (Lx). Notice that 
Im 9 c= Ker L since L9 (x) =  L x — Ls (Lx) — o for all x e  E. Moreover 9 
sends bounded sets of E into bounded sets of Ker L and the map 
h : F x  Ker L —> E defined by h (y > z) ~  s (y) ~ f z  is the continuous inverse 
of g  =  (L . 9 ) : E -> F X Ker L. Thus g  is a homeomorphism. Therefore, 
by Theorem 1.2, g  is o-regular.

Q.E.D.
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The following two propositions exhibit some classes of problems which 
possess an unbounded and connected set of solutions.

Proposition 3.1. Let L : £  —► F be an isomorphism and let h \  E x R w -> F 
be a compact map such that fo r  all x  e E , j| h (pc , o) || <  a +  b\\x  ||a, a , b >  o, 
o <  a <  I . Denote by S — \\(x , X) e  E X Rw : L x  =  h (x , X)}. Then there exists 
an unbounded connected component S c S .

Proof. Let 9 : E X Rn -> Rn be the map defined by 9 (x , X) — X and let 
L : E X R™ -> F be such that L (x , X) =  Lx. By Theorem 3.1 (L , 9) : E X Rn 
-> F XRw is o-regular. Moreover it is easy to see that the set {(x , X ) e E x R w: 
(L , 9) (x } X) =  T (h (x , X) , o) for some t  e [o ,1]} is bounded. Therefore; 
by the continuation principle (Theorem 2.3), L — h is o-regularizable and 
the assertion follows from Theorem 2.1.

Q.E.D.

Proposition 3.2. Let L :  E —> F be bounded linear and surjective with 
o <  dim Ker L <  +  00. Let h : E -> F be compact and such that, fo r  any 
x  6 E, Il k (x) Il <  a +  b || # ||a, a , b >  o , 0 <  a <  1. Then (L — h)”1 (o) contains 
a connected component which is unbounded.

Proof. Since dim K e r L  < + .0 0 , there exists a bounded linear projector 
P onto Ker L which o-regularizes L. Now, observe that the set {x e E : Px — o 
and Lx=- \ h ( pc)  for some Xe[ o ,  1]} is bounded. Thus L — h is o-regula
rizable (by P) and the assertion follows from Theorem 2.1.

Q.E.D.

4. Examples

Example 4.1. Let O be a bounded domain in Rn whose boundary is an 
(:n — i)-dimensional smooth submanifold of Rw. For every nonnegative in
teger k and for [a e ]  o , 1 [, denote by Co+fX (Û) the vector subspace of those 
functions ^ e C fc(Q), vanishing on 3Q, and such that all the partial derivatives 
of order k are [x-Hölder continous on Q. (£2) is a Banach space
endowed with the norm

v  I Docu(x)  — Da u ( y )
Il U ||»+lt =  Il U II» +  X  sup_--------- \ r ' v \\? —

Ia l~̂  x ,ye£ l II y  IIx^y

(II • ||̂  is the usual norm in C*\(Q)).
Consider the nonlinear boundary value problem:

Au — 7f  (pc, u) in O , X e R

u =  o on 3 0 ..
(4.1.i)

where f  : O X R R is continuously differentiable.
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By a solution of (4.1.1) we mean a pair (u , X) e Co+fX (û ) X R sotifying
(4.1.1) . To reformulate our problem in an abstract setting, observe first 
that the map h : C1 (Q) x R  —> C1 (ß) defined by h (u , X) =  \ f  (• , u (•)) is 
continuous.

On the other hand, C2+lx (ß) is compactly imbedded in Cx(ß); thus one 
can regard I  as a compact map h : Co+tx (ß) X R - > C '  (Q). Moreover it is 
well-known that L — A : Co+fA (ß) -> C W (O) is an isomorphism. Hence, pro
blem (4.1.1) can be rewritten as follows

(4.1.2) Lu  =  h ( u , X)

Thus, by Proposition 3.1, equation (4.1.2) has an unbounded connected com
ponent of solutions in Co+lA(ß )x R .

Example 4.2. Consider in C2 [o , 1] the problem

(4.2.1)

x = f ( t , x )
jl

j x (f) d t

where / :  [o , 1 ] X R R is a continuous map such that | / ( / , T )  | < M  for 
some M >  o. }

Denote by E the set of all functions x e C 2 [o , 1] such that f x  (t) dt  =  o 
and let F == C° [o , 1]. 0

Clearly the linear operator L : E -> F defined by (Lx) (t) =  x(t)  is onto 
with I-dimensional kernel. Moreover, since E is compactly imbedded in F, 
the Nemystkij operator h : E -> F given by h (x) (t) ~ f ( t , x  (f)) is compact 
and has bounded image because of the assumption |f . (t .ys) | < M . Then it 
follows immediately from Proposition 3.2, that the equation L x  =  h (x) 
admits an unbounded connected component of solutions in E.

Example 4.3. Consider in C1 [o , 1] x R  the problem:

(4-3 .1)
* ■= V ( t  ,x)

X s ( o )  =  X  (  I )

where/ :  [o , 1] x R  R is continuous. By a solution we mean a pair (x , X)e 
G C1 [0 , 1 ]  XR satisfying (4.3.1). We want to show that the solution-set of 
our problem contains an unbounded connected component. In order to see this, 
let G : C1 [o , 1] XR —̂ C° [o , 1] x R  be defined by G (x  , X) — (x  — ) /( •  , x(-)), 
x3 (o) —-x (1)) and let 9 : C1 [0 , 1 ]  X R - ^ R  be such that 9 (x , X)-= X. It is 
enough to prove (see Theorem 2.1) that 9 o-regularizes G. Consider Gj : 
C1 [o , I ] X R —► C° [o , i ] x R , G j (j ,X) =  ( i - — \ f  ( • , x  ( •)) , x  (o)) and let 
H : C1 [o , 1] XRX [o , 1] ->C° [o , 1] x R x R  be the homotop y H ((x , X) , t) =  
— (x — V*(# , x  (•)) , X , (o) +  (1 — t )  (.x3 (o) ■—-.x (1))). Clearly, the set
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{ ( ^ , X) 6C1 [o,  I] XR : H ((# , X) , t )  =  (o , 0  , o) for some t 6 [ o , i ] }  =  {(x  , X): 
x  —  \ f  (• , # ( • ) )  =  o , X =  o , xx  (o) +  (1 — t )  (x z (o) •— a: (i)) =  0 for some 
T'e [o, i ]} =  { (x , X) : x  (V) == £ =  const, for ail te  [o , 1 ] ,  xc +  (1 — t )  (â  — c)=o  
for some t  e [o , 1]} is bounded ad H (• , o) =  (G , 9) , H (• , 1) =  (Gj , 9). 
Thus (G, 9) is o-regular if and only if (Gx,9) is o-regular. Now, observe 
that '..(Gì, 9) can be regarded as the sum of the linear isomorphism 
L : C1 [o , i ] X R -> C° [o , i ] X R X R defined by L (x , X) =  (x , x  (o) , X) 
and of the compact map h : C1 [o , 1] x R  ->C° [o , 1] x R x  R defined by 
h (x  , X)= — (>/(•,  x  (•)) , 0 , 0 ) .  Therefore, since the set {(x , X) : L (x , X) =  
=  t  (>/(• , x  (•)) , 0 , 0 )  for some t  e fo , 1 ]} is the singleton {o}, it follows 
from the Homotopy Property that (G, , 9) — L -T h (• , 1) is o-regular.
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