Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

C.Y. Chan, Eutiquio C. Young

Comparison theorems for a coupled system of singular hyperbolic differential inequalities. II. Time-dependent coefficients with mixed coupled boundary conditions

\author{
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 66 (1979), n.5, p. 361-364.
 Accademia Nazionale dei Lincei
 ```
http://www.bdim.eu/item?id=RLINA_1979_8_66_5_361_0

```
}

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. - Comparison theorems for a coupled system of singular hyperbolic differential inequalities. II. Timedependent coefficients with mixed coupled boundary conditions. Nota di C. Y. Chan e Eutiquio C. Young, presentata (*) dal Socio G. Sansone.

RIASSUNTO. - L'articolo presenta teoremi di confronto per un sistema accoppiato di disequazioni differenziali iperboliche singolari con coefficienti dipendenti dal tempo e con condizioni al contorno miste e accoppiate. Si danno inoltre i risultati corrispondenti per un sistema accoppiato di disequazioni differenziali ordinarie.

\section*{i. Introduction}

The main purpose here is to extend our results in [I] to the case when the uncoupling coefficients of the coupled system of hyperbolic differential inequalities may depend also on the time variable \(t\) and when the boundary conditions are mixed and coupled. An an illustration, an example is constructed. At the end of the paper, we give corresponding results for a coupled system of singular ordinary differential inequalities. We refer to [I] for further references.

\section*{2. TTME-DEPENDENT COEFFICIENTS WITH MIXED COUPLED BOUNDARY CONDITIONS}

Let D be a bounded domain in the real \(n\)-dimensional Euclidean space with sufficiently smooth boundary \(\partial \mathrm{D}, \mathrm{R}=\mathrm{D} \times(\mathrm{o}, \mathrm{T})\) with \(\mathrm{T}<\infty, \mathrm{R}^{-}\)be the closure of \(\mathrm{R}, x=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)\) in D , and \(\mathrm{S}=\partial \mathrm{D} \times(0, \mathrm{~T})\). Let us consider the following coupled system
\[
\begin{gather*}
u_{t t}+\frac{k}{t} u_{t}-\left[a_{i j}(x, t) u_{x_{i}}\right]_{x_{j}}+b(x, t) u-c(x, t) v \geq 0 \quad \text { in } \mathrm{R},  \tag{2.1}\\
\partial_{u} / \partial v+p(x, t) u-q(x, t) v \geq 0 \quad \text { on } \mathrm{S},  \tag{2.2}\\
v_{t t}+\frac{k}{t} v_{t}-\left[a_{i j}(x, t) v_{x_{i}}\right]_{x_{j}}+\mathrm{B}(x, t) v+\mathrm{C}(x, t) u \leq 0 \quad \text { in } \mathrm{R},  \tag{2.3}\\
\quad \partial v / \partial v+\mathrm{P}(x, t) v+\mathrm{Q}(x, t) u \leq 0 \quad \text { on } \mathrm{S},
\end{gather*}
\]
where \(k\) is a real parameter such that \(-\infty<k<\infty\), the repeated indices are to be summed from one to \(n\), and \(\partial / \partial v=a_{i j} n_{i}\left(\partial / \partial x_{j}\right)\) is the outward
(*) Nella seduta del 21 aprile 1979.
conormal derivative with \(\left(n_{1}, n_{2}, n_{3}, \cdots, n_{n}\right)\) denoting the outward unit normal on S . In the boundary conditions (2.2) and (2.4), we allow
\[
-\infty<p(x, t), \mathrm{P}(x, t) \leq+\infty,
\]
where \(p\left(x_{0}, t_{0}\right)=+\infty\) denotes \(u\left(x_{0}, t_{0}\right)=0\), and \(\mathrm{P}\left(x_{1}, t_{1}\right)=+\infty\) denotes \(v\left(x_{1}, t_{1}\right)=0\).

We assume that the coefficient matrix \(\left(a_{i j}\right)\) is symmetric, positive definite and in class \(\mathrm{C}^{1}\left(\mathrm{R}^{-}\right)\), and the functions \(b, c, \mathrm{~B}\) and C belong to class \(\mathrm{C}\left(\mathrm{R}^{-}\right)\). A solution \((u, v)\) of the coupled system (2.1) and (2.3) belongs to \(\mathrm{C}^{2}(\mathrm{R}) \cap \mathrm{C}^{1}\left(\mathrm{R}^{-}\right)\). As in [ 1 ], the following lemma may be established.

Lemma i. If \((u, v)\) is a solution of (2.1) and (2.3), then for any \(k \neq 0\), \(u_{t}(x, 0)=0=v_{t}(x, 0)\).

In this paper, we assume that \(p, \mathrm{P}, q\) and Q are integrable over S ,
\[
\begin{array}{ll}
p(x, t) \leq \mathrm{P}(x, t), q(x, t) \geq 0, \mathrm{Q}(x, t) \geq 0 & \text { on } \mathrm{S}, \\
b(x, t) \leq \mathrm{B}(x, t), c(x, t) \geq 0, \mathrm{C}(x, t) \geq 0 & \text { in } \quad \mathrm{R},
\end{array}
\]
where at least one strict inequality holds somewhere in R. As in [r], we need to distinguish the cases \(k \geq 0\) and \(k<0\), and the following condition:
(I) \(u>0\) in R ; for \(x \in \mathrm{D}, u(x, \mathrm{~T})=\mathrm{o}\), and if \(k \leq 0\), then in addition \(u(x, 0)=0 ; v\left(x_{0}, t_{0}\right)>0\) for some point \(\left(x_{0}, t_{0}\right)\) in R .

Theorem I. For \(k \geq 0\), if \((u, v)\) is a solution of (2.1), (2.2), (2.3) and (2.4) such that condition (I) holds, then \(v\) must vanish somewhere in R .

The proof of the theorem is analogous to that of Theorem I of Young [2], and hence is omitted here. To illustrate the above result, let us construct an example.

Example . I. The problem under consideration is given by
\[
\begin{array}{ll}
u_{t t}-u_{x x}=0 & \text { for } 0<x<\pi, 0<t<\pi, \\
u(0, t)=0=u(\pi, t) & \text { for } 0<t<\pi, \\
u(x, 0)=0=u(x, \pi) & \text { for } 0<x<\pi, \\
v_{t t}-v_{x x}+u=0 & \text { for } 0<x<\pi, 0<t<\pi, \\
v(0, t)=0=v(\pi, t) & \text { for } 0<t<\pi .
\end{array}
\]

A solution of the above system is
\[
(u, v)=(\sin x \sin t,(t \sin x \cos t) / 2) .
\]

The hypotheses of Theorem 1 are satisfied with \(p \equiv+\infty\) for \(k=0\), and hence \(v\) must vanish somewhere in the domain \(\{(x, t): 0<x, t<\pi\}\). Indeed, we readily see that \(v\) is zero when \(t=\pi / 2\).

For \(k<0\), we have the following weaker result. Let \(\mathrm{R}^{*}=\mathrm{D} \times[\mathrm{o}, \mathrm{T})\).

Theorem 2. For \(k<0\), if \((u, v)\) is a solution of (2.1), (2.2), (2.3) and (2.4) such that condition (I) holds, then v must vanish somewhere in \(\mathrm{R}^{*}\).

Proof. Suppose \(v>0\) in R*. Let
\[
w(x, t)=u_{t}(x, t) v(x, t)-u(x, t) v_{t}(x, t) .
\]

From (2.1) and (2.3),
\[
w w_{t}+\frac{k}{t} w \geq\left[a_{i j}\left(v u_{x_{i}}-u v_{x_{i}}\right)\right]_{x_{j}}+(\mathrm{B}-b) u v+\mathrm{C} u^{2}+c v^{2} .
\]

Integrating this over D and setting
\[
\mathrm{I}(t)=\int_{\mathrm{D}} w(x, t) \mathrm{d} x,
\]
we obtain
\[
\mathrm{I}^{\prime}(t)+\frac{k}{t} \mathrm{I}(t) \geq \int_{\partial \mathrm{D}}\left(v \frac{\partial u}{\partial v}-u \frac{\partial v}{\partial v}\right) \mathrm{d} s+\int_{\mathrm{D}}\left[(\mathrm{~B}-b) u v+\mathrm{C} u^{2}+c v^{2}\right] \mathrm{d} x .
\]

Let us consider the integrand of the first integral on the right-hand side of the inequality. If \(p=+\infty\) at a point on \(\partial \mathrm{D}\), then \(\mathrm{P}=+\infty\) and \(u=0=v\) there. If \(\mathrm{P}=+\infty\) at a point on \(\partial \mathrm{D}\), then \(v=0\) there and since \(v>0\) in R , it follows that \(\partial v / \hat{v} \leq \mathrm{o}\) at that point. If \(-\infty<p \leq \mathrm{P}<+\infty\), then from the boundary conditions (2.2) and (2.4), the integrand is greater than or equal to
\[
(\mathrm{P}-p) u v+Q u^{2}+q v^{2} .
\]

Thus the first integral is nonnegative, and hence the right-hand side is a positive function of \(t\). By Lemma \(\mathrm{I}, \mathrm{I}(\mathrm{o})=0\). Since \(u_{t}(x, \mathrm{~T}) \leq 0\) and \(u(x, \mathrm{~T})=0\), we have \(\mathrm{I}(\mathrm{T}) \leq 0\). As in the proof of Theorem 2 in [ I\(]\), we conclude that \(\mathrm{I}(t)<\mathrm{o}\) for \(\delta<t<\mathrm{T}\). Since the integrand of
\[
\mathrm{I}(t)=\int_{\mathrm{D}} v^{2}(x, t) \frac{\partial}{\partial t}\left[\frac{u(x, t)}{v(x, t)}\right] \mathrm{d} x
\]
is continuous, there exists a subdomain \(\mathrm{D}_{-}\)of D and a number \(\delta>0\) such that \(\frac{\partial}{\partial t}\left(\frac{u}{v}\right)<0\) in \(\mathrm{D}_{-} \times(0, \delta)\), which we denote by \(\mathrm{R}_{-}\). Thus \(u / v\) is a decreasing function of \(t\) in R_. Since \(u(x, 0)=0\) in D implies \(u / v\) is zero in D at \(t=0\), it follows that \(u / v\) is negative in R . This contradicts that both \(u\) and \(v\) are positive in R. Thus the theorem is proved.

As in Theorem 3 of [I], a stronger result may also be given for \(k<0\) if we replace the operator in (2.1) by its adjoint:
\[
u_{t t}-\left(\frac{k}{t} u\right)_{t}-\left[a_{i j}(x, t) u_{x_{i}}\right]_{x_{j}}+b(x, t) u-c(x, t) v \geq 0 \quad \text { in } \mathrm{R} .
\]

\section*{3. Ordinary differential inequalities}

It is evident that the methods used can be applied to proving analogous comparison theorems for a coupled system of singular ordinary differential inequalities of the form:
\[
\begin{array}{ll}
u^{\prime \prime}+\frac{k}{t} u^{\prime}+b(t) u-c(t) v \geq 0 & \text { for } \quad 0<t<\mathrm{T} \\
v^{\prime \prime}+\frac{k}{t} v^{\prime}+\mathrm{B}(t) v+\mathrm{C}(t) u \leq 0 & \text { for } \quad 0<t<\mathrm{T} \tag{3.2}
\end{array}
\]
where
\[
b(t) \leq \mathrm{B}(t) \quad, \quad c(t) \geq 0 \quad, \quad \mathrm{C}(t) \geq 0,
\]
with at least one strict inequality holding somewhere in the interval ( \(0, T\) ), and the functions \(b, c, \mathrm{~B}\) and C belong to class \(\mathrm{C}[\mathrm{o}, \mathrm{T}]\). Such a system of equations with \(k=0\) was studied by Kreith [3].

As in Lemma 1 , it can be shown that every solution ( \(u, v\) ) of (3.1) and (3.2) in class \(\mathrm{C}^{2}(\mathrm{O}, \mathrm{T}) \cap \mathrm{C}^{1}[\mathrm{o}, \mathrm{T}]\) for \(k \neq 0\) has the property \(u^{\prime}(\mathrm{o})=0=v^{\prime}(\mathrm{o})\) We can also establish the following two theorems.

Theorem 3. If \((u, v)\) is a solution of (3.1) and (3.2) such that
(i) \(u>0\) for \(0<t<\mathrm{T}\),
(ii) \(u(\mathrm{~T})=0\), and if \(k \leq \mathrm{o}\), then in addition, \(u(\mathrm{o})=0\),
(iii) \(v\) is positive somewhere in the interval ( \(0, \mathrm{~T}\) ),
then for \(k \geq 0, v\) must vanish somewhere in \((\mathrm{o}, \mathrm{T})\), and for \(k<0, v\) must vanish somewhere in \([\mathrm{O}, \mathrm{T})\).

A stronger result for \(k<0\) is given in the following theorem for the adjoint operator of (3.1).

Theorem 4. If \((u, v)\) is a solution of the coupled system
\[
u^{\prime \prime}-\left(\frac{k}{t} u\right)^{\prime}+b(t) u-c(t) v \geq 0 \quad \text { for } \quad 0<t<\mathrm{T}
\]
and (3.2) for \(k<0\) under the hypotheses (i), (ii) and (iii) of Theorem 3, then \(v\) must vanish somewhere in ( \(\mathrm{O}, \mathrm{T}\) ).

\section*{References}
[I] C.Y. Chan and E.C. Young (1979)-Comparison theorems for a coupled system of singular hyperbolic differential inequalities. I. Time-independent uncoupling coefficients, "Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.) 66, 250-254.
[2] E.C. Young (1975) - Comparison and oscillation theorems for singular hyperbolic equations, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.», 59, 383-391.
[3] K. Kreith (1975) - Rotation properties of a class of second order differential systems, «J. Differential Equations», 17, 395-405.```

