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Seduta del 12 maggio 1979 
Presiede il  Presidente della Classe A ntonio Carrelli

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On the argument principle in multidimensional 
complex manifolds (*>. Nota di G uido L upacciolu, presentata 
dal Socio E. Martinelli.

RIASSUNTO. — Si dà un’estensione del classico teorema dell’indicatore logaritmico 
(“ argument principle” ) al caso in cui l’ambiente sia una varietà complessa multidimensio
nale e in particolare kähleriana.

§ I-

In  the present work we shall be concerned with holom orphic m appings 
from a complex m anifold X of complex dimension n  into a complex space 
O  being an integer such th a t I <  ^

For each such m apping f p =  ( f1, • • •,fp) : X -> O , not identically zero, 
we denote by Zfp the zero set of f 1, • • •t/ p and by ( f p) the M artinelli
form  associated with f p , th a t is:

Û W -U  (fp) =  ( -  i f 1 +  ■■ - - Y P  f t p *  d /1 A • • • A

A d /f A S  (— O'*-1 d / 1 A • • • / “ d ? “ - - A d / ' .

(*) Lavoro eseguito dall’Autore come borsista del C.N.R. 
(**) Neila seduta del 12 maggio 1979.

21. — RENDICONTI 1979, vol. LXVI, fase. 5.
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This form is smooth and closed outside z / , ’ where it becomes singular.
The present paper deals with an extension to f p , by means of ( f p),

of the classical argum ent principle for a function of one complex variable 
(see [1], p. 151),

T he case p  — n  is m erely a generalization of the well known M artinelli 
integral form ula and has already been considered (see [6], chap. II due to 
E. M artinelli, where one can find also a survey of B. Segre’s and Cacciop- 
poli’s contributions about related subjects). T he only assum ption in this case 
is th a t Zfp m ust contain at m ost isolated points. Then the extension of the 
argum ent principle to f n is given by the formula:

(1.1) J ? “ («,»-!) (A )
9D

= 2  V (Z)  9  (Z)
z—Zf in

where D is a relatively com pact open dom ain in X, whose boundary 3D is 
alm ost regular (1) and does not intersect Z/^ , 9 is any holom orphic function 
in X and v (z) m eans the m ultiplicity of ^ as a common zero of f 1, • • * ,/n (i.e. 
as intersection of the analytic varieties f 1 =  o , • • - , f n =  o in X). M oreover 
3D is given the  orientation induced by the canonical orientation of D (recall 
th a t locally, at a point x e D  where x h =  x h +  ixh ,-h=.  1 , • • - , n> are com
plex coordinates, this orientation is given by the differential form d x 1' f \ d x x ' A 
• • • A d xn' t \ d x n"). We do not dwell here upon the proof of the above formula; 

for this see [6 ] (2).
Now let us consider the case th a t 1 < ^  —  1 . Then the assum ption 

on f p is th a t it m ust be regular at the generic point of Zfp . M ore precisely, 
if Cfp is the critical set of f p (i.e. the set of the points of X where the differentials 
d f1 ,* * *, d f v are linearly dependent), the following m ust hold:

(i) The analytic set Zfp H has complex dimension <  n — p  —  1 
at each point.

This implies th a t Zfp is the topological closure of a complex m anifold 
Z/^ of complex dimension n  — p  (3). Z ^  is the set of the points of Zfp where f p 
is regular: Z / =  Z / \ C /  . Therefore if D is any relatively compact open 
domain in X, the integral of a continuous 2 (n — ^ )-fò rm  in X over fi D 
m ay be defined as the integral over Z/  H D. T hat this is convergent follows 
from known results about integration of forms over analytic sets (see [5]). 
W e assume furtherm ore th a t the boundary 3D of D be alm ost regular and 
satisfy the following condition:

(it) The set Zfp D 3D has zero measure in Zfp .

(1) For a definition see [2], p. 421.
(2) In this book a different agreement is made about orientations so that on the left 

side of the formula (1.1) there might be a difference about sign.
(3) We are assuming that Zfp is not empty; otherwise the treatment would be trivial.
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Then the extension of f p to the argum ent principle is given by the fol
lowing:

Theorem. Under the assumptions (i), (zi) the fo llow ing  fo rm ula  is valid'.

where 9(n-p,n-z>) Is any  bihomogeneous smooth d-closed fo rm  in  X of bidegree 
(n — p  , p) .

Note that the 9-closed form replaces here in a natural way the
holom orphic function 9. =  9(0>o) of (1,1), as well as the integral on the right 
side of (1.2) is a obvious modification of the sum on the right side of (1.1).

Assume, in particular, tha t X m ay be given a K ähler metric, with K ähler 
form Q. It is known th a t the exterior power Çln~v of Q yields the multiple 
by ( n — p )\  of the volume element for the submanifolds of X of complex 
dimension n — p , w ith respect to the R iem annian metric associated with 
the given K ähler m etric (see [3], p. 143). Therefore, if in (1.2) we choose 
as 9 (n-p,n-p) the form 1 j ( n — p) \ we get:

COROLLARY I. I f  (X , Q) is a K ähler m anifold and  f p , D satisfy the con
ditions (i) , (ii), the fo llow ing  fo rm ula  is valid'.

where N o l ~  (pin — 1 f)-volum e.

L et us consider the case when X is an open subset of Cn (x1 , • • •, x n) 
and O is the standard  K ähler form, th a t is:

and hence:

Corollary II. I f  X is an open subset o f Cn and f P, D satisfy the conditions 
(i) , (ii) , the fo llow ing  fo rm u la  is valid'.

(1.2)

Q =  4  è  dxh a
2 h = l

T hen we get:*

n—p
2  dxhl A dxhl A • * • A dxhn~v A d

(fp) A 2  Ad**1 A • • • A dxhn-v  A dxhn~P =

=  Voi (Zf* 0 D ) .

0 -4)
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For p  =  I this form ula has already been considered by  W. 
(see [7]) .

W irtinger

§2.

In this § we give a proof of the formula (1.2) under a hypothesis on the 
m apping f p stronger than  (i). We assume th a t each point of Zfp be a regular 
point for f p , th a t is:

0 0  n c f P ~  0  •

In § 3 we shall extend the validity of the form ula (1.2) to the case of the 
weaker assum ption (i).

First of all observe th a t the integral on the left side of (1.2) m ust be re
garded as an im proper integral, whose singular set is

T  =  z , , n a D .

Therefore it m ust be evaluated as the limit of the integral

r
(2*0 I !) (.fp) A 9(n—p,n—p)

ab\TM

as r  —»• 00 , {T[̂ }r==0>1)... being a fundam ental sequence of open neighbour
hoods of T  in 9D. Such a sequence can be easily found by m eans of the 
function

I fp I =  C/ 1 f 1 +  • • • + f p f p)v* ■ x  -  R+ •

Since f p is regular at each point of Zfp (due to («')), its im age / 2>(X )c  O  
contains an open neighbourhood of the origin 4 (5) 6. Hence the image | f P|(X) c= R+ 
of I f p I contains an open neighbourhood of o in R+. M oreover S ard ’s theorem  (6) 
yields th a t “ almost all ” points of the latter are regular values of | f p |. It 
follows th a t we can find a decreasing sequence of regular values of | f p | , say 
{sr}r=o,i, • • • which converges to o and whose first term  s0 is as small as we 
please. Then set for each r  :

X [r] =  {*e X : I f p \ (x) <  zr) .

(4) In this paper the author assumes the function =  /  meromorphic. Then on the 
right side of the formula there is the difference Vol(Z^nD)^— V ol(P ^ n D ), where is 
the polar set of / .  However for ft — 1 the extension from the holomorphic to the meromorphic 
case can be easily achieved as a consequence of Cousin’s theorem (see [6], p. 126).

(5.) This is true even if f p is regular only at some points of Zfp and hence under the 
assumption (2).

(6) See [4], p. io.
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It follows from the im plicit function theorem  th a t is a 2 ^-dim en
sional manifold with boundary regularly em bedded in X. Let us denote the 
boundary by  :

Zw =  { ace X  : \ f p \ (x) =  sr} .

Now set for each r  :

T [r] =  xM  n 3D .

N ext consider for each r the set:

D w =  D \ X [r] .

If z0 is small enough, as we assume, is a relatively compact open 
dom ain in X with almost regular boundary given by:

3D[f3-=  ( a D \ T [r]) U (— Zw n D) ,

where th e  union is disjoint and the negative sign before Z ^  m eans th a t the 
boundary  of X w m ust be taken here with the orientation opposite to the 
canonical one.

Since D w does not intersect Zfp1 the form <ò(VìV-i) ( fp) A <P(n-v,n-p) is 
not singular there. It is also closed, because <*>(p,p-i) ( / p)-is closed and 9(n- P)n- P) 
9-closed, whence:

d (w(p̂-l) (/p) A ~ ( 0 ^fp) A p,n—v) >

and the form at the righ t side has bidegree in  -f- 1 , n — 1) and therefore is 
zero. It follows from Stokes’ theorem  applied to that:

(2 *2) j wCp-,p-l) '(fp) A 9 (n-p,n-p) — j  ( / P) A ?(»-p >n-V) •
?d\ tM zWod

Now recall the assum ption (A). Since D is compact, if z0 is small enough, 
as we assume, we can find relatively compact open sets in X
such that:

N
(a) Z[0] n D c U  =  ( J u * .

k—1

(b) For each k  — 1 , • • - , N there exist n —  p  holomorphic functions
in U& , g \  , • • , such th a t the m apping

=  (Z1 , • • U , -  ct (U *)c C™

is a local coordinate system on X.
N

Therefore, if we consider a smooth partition of un ity  on U  , ^  =  1 >

such th a t supp y ^ c U ^ ,  we m ay replace the integral on the right side of (2.2)
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N
by the sum where

(2.3) ^ l r] = J W (S*<P,P-1) (f p) A'r* <P(n-p,n-p)) .
^(U^nzWnD)

Hence, to conclude the proof, we have to show th a t tends to the
limit

(2-4) ~  ^  (T&
ctfUjnz^nD)

as r  -> 00 .

F irst note that:

^{P’P—!) (/p) ~~ O*'1 > * * ’ >

M oreover, if E  denotes the linear subspace of Cn represented by the equa
tions x 1 =  • • • =  xv — o and E W the hypersurface represented by the equation 
x 1 x 1 +  • • • +  xp xp — , then:

. n z fp n D) =  ch QJh n D) n e  , c*(u* Q z w n d )  -  r*(U* n D) n e w .

Therefore, setting

I \ ~~ Ck (Y* 9(n-p,n-p)) in Cfc (U& H D) ,
Tk(n-p,n-p) [

1 = 0  in CW\* * ( U *  n D ),

we get:

(2.5) ! ^  I ^(P’P—!) O*'* ’ * * *> A p) > k ~  I tyk(n—p,n—p) •
J J

eW e

Now observe th a t E w m ay be regarded as the product S8r X E, where 
SSr is the (2 p — i)-sphere with center at the origin and radius zr in the linear 
subspace of Cn represented by the equations xp+1 =  • • • =  x p =  o . Therefore, 
if S denotes the unit sphere in this subspace, we m ay perform  the change of 
variables

oy : (x1 , • * •, x n) ,(sf x 1 , • • •, zr x p , , • • •, x n)

and replace E w by S x E  in ^Ÿ-1. Since the form (x1 , * * *, x p) is
invarian t under this change of variables, we get:

~  I ^(PtP—l) (x1 y * * ’ > A Gy •
SxE

(2.6)
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Now let us show that:

lim Gr tyk(n—p,n—p) — tyk(n—p,n—p) I E ^
r~>oo

almost everywhere on S x E  , uniform ly on the compact subsets where the 
limit exists. As a consequence we shall be allowed to evaluate the limit of 
^ k  ̂ when r  —> oo under the sign of integration, getting:

(2.7) lim -Xsf1 =  ( X . • • • > *p) A ( i M .B - f )  I E) .
r-> 00 J

Sx E

Consider the set E 0 =  E H Ty (supp y*. fi 3D). It follows from the assum p
tion (i t)  that E0 has zero m easure in E. Hence S x E 0 has zero m easure in 
S x E . For each x  =  ( x 1 , • • - , x n) in S x E \ S  x E 0 consider the projection 
x  =: (o , • • •, o , xp+1, • • •, x n) of x  onto E. Let 8 (x) be the distance of x  from 
ck (supp yk 0 3D). This is positive because x  $ E 0 and ck (supp y* fl 3D) is 
compact. Therefore there exists an integer r0 such th a t sr <  8 (x) for r > r 0 
and consequently Gr (x) $ ck (supp y& fl 3D). Since the form ^k(n-p,n-p> is 
continuous outside rk (supp yk H 3D), it follows th a t ar §ic(n-p,n-p) is conti
nuous at the point x  for r > r 0, Therefore the limit lim <7* ̂ >k(n-p,n-p) exists

r-^00
at each point x e  S x E \ S  x E 0 and m ay be obtained by replacing zr by o in 

tykin-P'U-py, which obviously yields the form i>k(n-p,n-p) I E.
M oreover th a t this lim it is uniform  on compact subsets of S X E \S  x E 0 

follows easily from the fact th a t the function 8 is continuous and positive.
Finally  consider the integral on the right side of (2.7). It m ay be com

puted as the product of the two integrals

j f  °*(p ,p—i )  # > xV ) > ^ k  •
s

Since the first is 1 7 (8), the proof is completed.

§ T

Now assume th a t f v satisfy the condition (2), but not the stronger con
dition (z').

As we have already noticed (see §2, footnote 5). the image f p (X)cz O  
of f p contains an open neighbourhood of the origin, say I. Then let I ' denote

(7) Obvioùsly the restriction of §k(n-p,n-p) to E is obtained by putting o instead of 
xh , # ,  d^Â, àxh for h — 1 , • • - , p,  and may be regarded as a form on the whole Cn.

(8) To see this write the formula (1.1) for n = p  , X =  Cp , f p =  (x1 , • • -, xp) , 9 == 1, 
3D =  S.
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the set of critical values of f v in I and I"  the set of those regular values 
X — (X' , • • - , Xp) in I for which Z/p- x  ^ has not zero m easure in Z . 
It follows from Sard 's theorem  th a t I ' has zero measure, and it can be shown 
tha t the same is true for I" , although we do not linger over this point. Hence 
the set J =  I \ ( I '  U I" ) is everywhere dense in I, so th a t we can find a 
sequence of points of J converging to the origin as s 00.
T hen  set for each s:

/[* ]  f   qW
Jp — Jp A

Since fp J satisfies the conditions (r )  , (i i), the form ula (1.2) is valid for 
fpS\  as we have proved in § 2. Hence, taking the limit as ^ 00 , it follows
tha t this is valid also for f p .
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