# Atti Accademia Nazionale dei Lincei <br> Classe Scienze Fisiche Matematiche Naturali RENDICONTI 

## Mihai Turinici

# Abstract monotone mappings and applications to functional differential equations 

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 66 (1979), n.3, p. 189-193.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1979_8_66_3_189_0](http://www.bdim.eu/item?id=RLINA_1979_8_66_3_189_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni funzionali. - Abstract monotone mappings and applications to functional differential equations. Nota di Mihai Turinici, presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - In questa Nota si dimostra un teorema di punto fisso per una classe di applicazioni monotone in senso astratto.
I. Throughout this Note, for every nonempty set $\mathrm{X}, \mathscr{P}(\mathrm{X})$ denotes the class of all nonempty $\mathrm{Y} \subset \mathrm{Y}$. Let X be a nonempty set and let $\leq \subset \mathrm{X}^{2}=$ $=\mathrm{X} \times \mathrm{X}$ be an ordering on X . For every $x \in \mathrm{X}, \mathrm{Y} \subset \mathrm{X}$, put $\mathrm{Y}(x, \leq)=$ $\{y \in \mathrm{Y} ; x \leq y\}$. Denote by $\geq$ the associated dual ordering (i.e., $x \geq y$ iff $y \leq x$ ) [2, p. 3], and let $\supset \leq$ (resp. $\supset \geq$ ) denote the set-ordering defined on $\mathscr{P}(\mathrm{X})$ by: $\mathrm{Y} \supset \leq \mathrm{Z}$ (resp. $\mathrm{Y} \supset \geq \mathrm{Z}$ ) iff $\mathrm{Y} \supset \mathrm{Z}$ and, for every $y \in \mathrm{Y}$ there is a $z \in Z$ with $y \leq z$ (resp. $y \geq z$ ).

Let ( $\mathrm{X}, \tau$ ) be a topological space and let $\leq$ be an ordering on $\mathrm{X} . \leq$ is said to be a closed ordering iff $\mathrm{X}(x, \leq)$ is closed, for every $x \in \mathrm{X}$. ( $\mathrm{X}, \tau$ ) is said to be $\supset \leq($ resp. $\supset \geq)$-compact iff, for every $\supset \leq$ (resp. $\supset \geq)$ directed family $\mathscr{U} \subset \mathscr{P}(\mathrm{X})$ of closed sets, $\cap \mathscr{U} \neq \varnothing$. Clearly, if ( $\mathrm{X}, \tau$ ) is compact in the ordinary sense [5, ch. 5], it is also $\supset \leq$ (resp. $\supset \geq$ )-compact, but the converse is not in general true (take $X=R_{-}$(resp. $R_{t}$ ) with the usual topology and the usual (resp. dual) ordering).
2. Let X be a nonempty set, $\leq$ an ordering on X and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ a monotone mapping (i.e., $x \leq y \Rightarrow \mathrm{~T} x \leq \mathrm{T} y$ ) from X into itself. An useful result concerning the fixed points of T (a result that may be considered as a partial refinement of [ 1 , Theorem 3]) may be stated as follows.

Theorem 2.i. Let $\mathrm{X}, \leq, \mathrm{T}$ and $x \in \mathrm{X}$ satisfy
(2.1) every chain $\mathrm{C} \subset \mathrm{T}(\mathrm{X})$ has a supremum (infimum)
(2.2) $\quad x \leq \mathrm{T} x$ (resp. $x \geq \mathrm{T} x$ ).

Then, there exists $a v \in \mathrm{X}$ (resp. auєX) such that (a) $v=\mathrm{T} v$ (resp. $u=\mathrm{T} u$ ), (b) $x \leq \mathrm{T} x(\operatorname{resp} . x \geq \mathrm{T} x) \Rightarrow x \leq v(\operatorname{resp} . x \geq u)$.

Proof. Suppose $x \leq \mathrm{T} x$ (the proof for the dual ordering $\geq$ is similar) and put $\mathrm{Y}=\{x \in \mathrm{X} ; x \leq \mathrm{T} x\}$. From Hausdorff maximal principle [5, p. 33] there exists a maximal chain $\mathrm{L} \subset \mathrm{Y}$; with $x \in \mathrm{~L}$; as T is monotone, $\mathrm{T}(\mathrm{L}) \subset \mathrm{T}(\mathrm{Y}) \subset \mathrm{T}(\mathrm{X})$ is also a chain in $\mathrm{T}(\mathrm{X})$ and so, from (2.1), there exists

[^0]$v=\sup \mathrm{T}(\mathrm{L})$. Since $x \leq \mathrm{T} x \in \mathrm{~T}(\mathrm{~L})$, we get $x \leq v$, which gives (again by the monotonicity of T ) $\mathrm{T} x \leq \mathrm{T} v, \forall x \in \mathrm{~L}$, and therefore (from the definition of the supremum) $v \leq \mathrm{T} v$, i.e., $v \in \mathrm{Y}$. Now, since $x \leq v, \forall x \in \mathrm{~L}$, we infer (from the maximality of L ) $v \in \mathrm{~L}$. As $v=\sup \mathrm{T}(\mathrm{L})$ and $\mathrm{T} v \in \mathrm{~T}(\mathrm{~L})$, we get $\mathrm{T} v \leq v$ and thus (combining with the preceding relation) $v=\mathrm{T} v$, completing the proof.
Q.E.D.

Remark 2.I. A sufficient condition for (2.1) is
(2.3) every chain $\mathrm{C} \subset \mathrm{X}$ has a supremum (infimum).

Corollary 2.1. Suppose that, in the above theorem, conditions (2.1) and (2.2) are replaced respectively, by
(2.1)' every chain $\mathrm{C} \subset \mathrm{T}(\mathrm{X})$ has in the same time a supremum and an infimum

$$
\begin{equation*}
\text { either } x \leq \mathrm{T} x \text { or } x \geq \mathrm{T} x \text {, } \tag{2.2}
\end{equation*}
$$

Then, there exist $v, u \in \mathrm{X}$ such that (a) $v=\mathrm{T} v, u=\mathrm{T} u$, (b) $x \leq \mathrm{T} x$ $(r e s p . x \geq \mathrm{T} x) \Rightarrow x \leq v(r e s p . x \geq u)$, (c) $x=\mathrm{T} x \Rightarrow u \leq x \geq v$.

Remark 2.2. Under the conditions of the above corollary, it is justified to call $v$ (resp. $u$ ) a maximal (resp. minimal) solution of the equation $x=\mathrm{T} x$.
3. Let ( $\mathrm{X}, \tau$ ) be a topological space, $\leq$ an ordering on X and T a monotone mapping from X into itself. The main result of this Note (a result that may be considered as a "topological" version of Theorem 2.1) is the following.

Theorem 3.i. Let ( $\mathrm{X}, \tau$ ), $\leq, \mathrm{T}$ and $x \in \mathrm{X}$ satisfy both $\leq$ and $\geq$ are closed orderings
(3.2) $\overline{\mathrm{T}(\mathrm{X})}$ (the closure of $\mathrm{T}(\mathrm{X})$ ) is both $\supset \leq$ and $\supset \geq$-compact

$$
\text { either } x \leq \mathrm{T} x \text { or } x \geq \mathbf{T} x .
$$

Then, there exist $v, u \in \mathrm{X}$ such that (a) $v=\mathrm{T} v, u=\mathrm{T} u$, (b) $x \leq \mathrm{T} x$ (resp. $x \geq \mathrm{T} x) \Rightarrow x \leq v(r e s p . x \geq u)$, (c) $x=\mathrm{T} x \Rightarrow u \leq x \leq v$.

Proof. Let $\mathrm{C} \subset \mathrm{T}(\mathrm{X})$ be an arbitrary chain in $\mathrm{T}(\mathrm{X})$. Firstly, we prove that for every $z \in \overline{\mathrm{C}}, x \in \mathrm{C}, z$ and $x$ are comparable. Indeed, suppose $z$ and $x$ are not comparable. From (3.I) there exists a neighborhood $\mathrm{U} \in \mathscr{V}(z)$ such that, for every $u \in \mathrm{U}, u$ and $x$ are not comparable. Let $\mathrm{V} \in \mathscr{V}(z)$ be arbitrary (without loss of generality we may suppose $\mathrm{V} \subset \mathrm{U}$ ). As our assumption implies $z \in \overline{\mathrm{C}} \backslash \mathrm{C}$, there exists a $y \in \mathrm{C}$ such that $y \in \mathrm{~V} \subset \mathrm{U}$, i.e., $y$ and $x$ are not comparable, a contradiction, proving our assertion. In this case, the family $\{\overline{\mathrm{C}}(x, \leq) ; x \in \mathrm{C}\} \subset \mathscr{P}(\overline{\mathrm{T}(\mathrm{X})})$ is a $\supset \leq$-directed family of closed sets and so, from (3.2), $\cap\{\overline{\mathrm{C}}(x, \leq) ; x \in \mathrm{C}\}=\mathrm{M}$ is nonempty and closed. Furthermore,
for every $w \in \mathrm{M}, \mathrm{C} \subset \mathrm{X}(w, \geq)$, and this gives $\overline{\mathrm{C}} \subset \overline{\mathrm{X}(w, \geq)}=\mathrm{X}(w, \geq)$. From this fact, $M$ will consist of a single element, i.e., $M=\{z\}$, for some $z \in \mathrm{X}$. Firstly, from the above remark, $x \leq z, \forall x \in \mathrm{C}$. Now, let $u \in \mathrm{X}$ be such that $x \leq u, \forall x \in \mathrm{C}$. This means that $\mathrm{C} \subset \mathrm{X}(u, \geq)$ and thus $z \in \overline{\mathrm{C}} \subset$ $\overline{\mathrm{X}(u, \geq)}=\mathrm{X}(u, \geq)$, i.e., $z \leq u$, showing that $z=\sup \mathrm{C}$. An analogous reasoning may be done for the dual ordering $\geq$, and so, (2.1)' holds. On the other hand, (3.3) coincides with (2.2)'. Therefore, corollary 2.1 applies, and this completes the proof.
Q.E.D.

Let A be a nonempty set and let $\leqq$ be an ordering on A. A family $\left\{\mathrm{T}_{a} ; a \in \mathrm{~A}\right\}$ of mappings from X into itself is said to be a monotone f umily iff, for every $a, b \in \mathrm{~A}, a \leqq b$, and $x \in \mathrm{X}$, we have $\mathrm{T}_{a} x \leq \mathrm{T}_{b} x$.

Now, suppose $\left\{\mathrm{T}_{a} ; a \in \mathrm{~A}\right\}$ is a monotone family of monotone mappings from $X$ into itself, having a unique maximal and minimal fixed point.

Corollary 3.I. Suppose that, for every $a \in A$, conditions of Theorem 3.1 are satisfied, with T replaced by $\mathrm{T}_{a}$. Furthermore, for every $a \in \mathrm{~A}$, let $\mathrm{S}(a)$ (resp. $s(a)$ ) denote the maximal (resp. minimal) solution of the equation $x=\mathrm{T}_{a} x$. Then, necessarily, the mappings $\mathrm{S}: \mathrm{A} \rightarrow \mathrm{X}$ and $s: \mathrm{A} \rightarrow \mathrm{X}$ are monotone.
4. Let $n \geq$ I be a positive integer and let $\left(\mathrm{R}^{n},\|\cdot\|\right)$ be the euclidean $n$-dimensional space endowed with a norm $\|\cdot\|$. Furthermore let $\{I, J\}$ be a partition of $\{\mathrm{I}, \cdots, n\}$. Define an ordering $\leq$ on $\mathrm{R}^{n}$ by
i) $\left(x_{1}, \cdots, x_{n}\right) \leq\left(y_{1}, \cdots, y_{n}\right)$ iff $x_{i} \leq y_{i}, \quad \forall i \in \mathrm{I}, x_{j} \geq y_{j}, \quad \forall j \in \mathrm{~J}$
where, in the right hand, $\leq$ denotes the usual ordering on $R$, and $\geq$ its dual. Clearly, $\leq$ is a closed ordering on $\mathrm{R}^{n}$.

In what follows, X (resp. A) denotes the set of all continuous $x: \mathrm{R}_{+} \rightarrow \mathrm{R}^{n}$ (resp. $a: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$). For every $x \in \mathrm{X}$, define $\|x\| \in \mathrm{A}$ by
ii) $\quad\|x\|(t)=\|x(t)\|, \quad \forall t \in \mathrm{R}_{+}$
and $|x| \in A$ by
iii) $\quad|x|(t)=\sup \{\|x(s)\| ; s \in[0, t]\}, \quad \forall t \in \mathrm{R}_{+}$.

It is well known that X is a locally convex space, with the topology defined by the directed family of seminorms $\mathscr{S}=\left\{|\cdot|(t) ; t \in \mathrm{R}_{+}\right\}$Denote also by $\leq$ the ordering on $X$ induced by the ordering $\leq$ on $R^{n}$, in the usual way, i.e.,
iv) $\quad x \leq y$ iff $x(t) \leq y(t), \quad \forall t \in \mathrm{R}_{+}$.

Clearly, $\leq$ is a closed ordering on X and so is $\geq$ its dual.
Let $t-\hat{t} \in \mathscr{P}\left(\mathrm{R}_{+}\right)$be a given mapping. Denote for simplicity $\hat{\mathrm{R}}_{+}=$ $=\left\{\hat{t} ; t \in \mathrm{R}_{+}\right)$. Let $x^{0} \in \mathrm{R}^{n}$ and $k: \mathrm{X} \times \hat{\mathrm{R}}_{+} \rightarrow \mathrm{R}^{n}$. Then, we may consider 13. - RENDICONTI 1979, vol. LXVI, fasc. 3.
(formally) the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=k(x, \hat{t}), \quad \forall t \in \mathrm{R}_{+} ; \quad x(0)=x^{0} \tag{4.1}
\end{equation*}
$$

and the associated functional integral inequalities

$$
\begin{align*}
& x(t) \leq x^{0}+\int_{0}^{t} k(x, \hat{s}) \mathrm{d} s, \quad \forall t \in \mathrm{R}_{+}  \tag{4.2}\\
& x(t) \geq x^{0}+\int_{0}^{t} k(x, \hat{s}) \mathrm{d} s, \quad \forall t=\mathrm{R}_{+}
\end{align*}
$$

The main result concerning (4.1)-(4.3) may be stated as follows.
Theorem 4.I. Suppose there exist $g \in \mathrm{~A}, \mathrm{~K}: \mathrm{A} \times \hat{\mathrm{R}}_{+} \rightarrow \mathrm{R}_{+}$, and $x \in \mathrm{X}$ such that (denoting $\mathrm{X}_{1}=\{x \in \mathrm{X} ;\|x\| \leq g\}$ and $\mathrm{A}_{1}=\{a \in \mathrm{~A} ; a \leq g\}$ )
(4.4) $\quad \forall x \in \mathrm{X}_{1}$ the map $t-k(x, \hat{t})$ is continuous
(4.5) $\quad \forall a \in \mathrm{~A}_{1}$ the map $t \leftharpoondown \mathrm{~K}(a, \hat{t})$ is continuous
(4.6) $\quad k$ is monotone $\left(x, y \in \mathrm{X}_{1}, x \leq y \Rightarrow k(x, \hat{\cdot}) \leq k(y, \hat{r})\right)$
(4.7) K is monotone $\left(a, b \in \mathrm{~A}_{1}, a \leq b \Rightarrow \mathrm{~K}(a, \hat{\cdot}) \leq \mathrm{K}(b, \hat{\cdot})\right)$
(4.8) $\quad\|k(x, \hat{r})\| \leq \mathrm{K}(\|x\|, \hat{r}), \quad \forall x \in \mathrm{X}_{1}$

$$
\begin{equation*}
\left\|x^{0}\right\|+\int_{0}^{t} \mathrm{~K}(g, \hat{s}) \mathrm{d} s \leq g(t), \quad \forall t \in \mathrm{R}_{+} \tag{4.9}
\end{equation*}
$$

(4.10) $x \in \mathrm{X}_{1}$ and satisfies at least one of the associated functional integral inequalities (4.2), (4.3).

Then, there exist $v, u \in \mathrm{X}_{1}$, such that (a) $v$ and $u$ are solutions of (4.1), (b) if $x \in \mathrm{X}_{1}$ is a solution of (4.2) (resp. (4.3)) then $x \leq v$ (resp. $x \geq u$ ),
(c) if $x \in \mathrm{X}_{1}$ is a solution of (4.1), then $u \leq x \leq v$.

Proof. Let $\mathrm{T}: \mathrm{X}_{1} \rightarrow \mathrm{X}$ be defined, for every $x \in \mathrm{X}_{1}$, by

$$
\begin{equation*}
\mathrm{T} x(t)=x^{0}+\int_{0}^{t} k(x, \hat{s}) \mathrm{d} s, \quad \forall t \in \mathrm{R}_{+} \tag{4.1I}
\end{equation*}
$$

From (4.8) $+(4.9), \mathrm{T}\left(\mathrm{X}_{1}\right) \subset \mathrm{X}_{1}$, i.e., $\|\mathrm{T} x\| \leq g, \forall x \in \mathrm{X}_{1}$. On the other hand, from (4.7) $+(4.8), \quad\left\|(\mathrm{T} x)^{\prime}\right\|=\|k(x, \hat{\cdot})\| \leq \mathrm{K}(\|x\|, \cdot \hat{)} \leq \mathrm{K}(g, \hat{\cdot})$, $\forall x \in \mathrm{X}_{1}$. So from the well known Arzelà-Ascoli theorem [4], [5, p. 234], $\mathrm{T}\left(\mathrm{X}_{1}\right)$ is relatively compact. Finally, (4.6) says that T is monotone. Thus, Theorem 3.I is entirely applicable, and this completes the proof. Q.E.D.

Remark 4.I. As in $\S 2$, it is justified to call $v$ (resp. $u$ ) a maximal (resp. minimal) solution of (4.1).

Remark 4.2. In the above theorem, the mapping $T$ defined by (4.II) is not in general continuous. Therefore, Banach's fixed point theorem, as well as Schauder-Tychonoff's fixed point theorem (see, e.g., [4]) are not in general applicable.

Remark 4.3. An useful application of these methods might be done in the context of projective functional (differential) equations, [3], [6], in which the class of (abstract) monotone mappings plays an essential role.

## References

[1] S. Abian and A. B. Brown (1961) - A theorem on partially ordered sets with applications to fixed point theorems, "Canad. J. Math.", I3, 78-82.
[2] G. Birhoff (1948) - Lattice theory, «Amer. Math. Soc. Coll. Publ., rev. ed. », New York.
[3] P. J. Bushell (1976) - On a class of Volterra and Fredholm nonlinear integral equations, «Math. Proc. Cambr. Phil. Soc.》, 79, 329-335.
[4] C. Corduneanu (1966) - Sur certaines équations fonctionelles de Volterra, "Funkc. Ekv.», 9, I19-127.
[5] J. Kelley (1975) - General topology, Springer Verlag, New York. Heidelberg. Berlin.
[6] M. Turinici (1977) - Projective metrics and nonlinear projective contractions, «An. St. Univ. 'Al. I. Cuza' Iasi 》, 23, 271-280.


[^0]:    (*) Nella seduta del io marzo $1979 . \quad$.

