ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Mihai Turinici

Abstract monotone mappings and applications to functional differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **66** (1979), n.3, p. 189–193. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1979_8_66_3_189_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1979.

Equazioni funzionali. — Abstract monotone mappings and applications to functional differential equations. Nota di MIHAI TURINICI, presentata (*) dal Socio G. SANSONE.

RIASSUNTO. — In questa Nota si dimostra un teorema di punto fisso per una classe di applicazioni monotone in senso astratto.

1. Throughout this Note, for every nonempty set X, $\mathscr{P}(X)$ denotes the class of all nonempty $Y \subset Y$. Let X be a nonempty set and let $\leq \subset X^2 = X \times X$ be an ordering on X. For every $x \in X$, $Y \subset X$, put $Y(x, \leq) = \{y \in Y ; x \leq y\}$. Denote by \geq the associated dual ordering (i.e., $x \geq y$ iff $y \leq x$) [2, p. 3], and let $\supset \leq$ (resp. $\supset \geq$) denote the set-ordering defined on $\mathscr{P}(X)$ by: $Y \supset \leq Z$ (resp. $Y \supset \geq Z$) iff $Y \supset Z$ and, for every $y \in Y$ there is a $z \in Z$ with $y \leq z$ (resp. $y \geq z$).

Let (X, τ) be a topological space and let \leq be an ordering on X. \leq is said to be a closed ordering iff $X(x, \leq)$ is closed, for every $x \in X$. (X, τ) is said to be $\supset \leq$ (resp. $\supset \geq$)—compact iff, for every $\supset \leq$ (resp. $\supset \geq$) directed family $\mathscr{U} \subset \mathscr{P}(X)$ of closed sets, $\cap \mathscr{U} \neq \emptyset$. Clearly, if (X, τ) is compact in the ordinary sense [5, ch. 5], it is also $\supset \leq$ (resp. $\supset \geq$)—compact, but the converse is not in general true (take $X = R_{-}$ (resp. R_{+}) with the usual topology and the usual (resp. dual) ordering).

2. Let X be a nonempty set, \leq an ordering on X and T: X \rightarrow X a monotone mapping (i.e., $x \leq y \Rightarrow Tx \leq Ty$) from X into itself. An useful result concerning the fixed points of T (a result that may be considered as a partial refinement of [1, Theorem 3]) may be stated as follows.

THEOREM 2.1. Let X, \leq , T and $x \in X$ satisfy

(2.1) every chain $C \subset T(X)$ has a supremum (infimum)

$$(2.2) \quad x \leq \mathrm{T}x \ (resp. \ x \geq \mathrm{T}x).$$

Then, there exists a $v \in X$ (resp. $a u \in X$) such that (a) v = Tv (resp. u = Tu), (b) $x \leq Tx$ (resp. $x \geq Tx$) $\Rightarrow x \leq v$ (resp. $x \geq u$).

Proof. Suppose $x \leq Tx$ (the proof for the dual ordering \geq is similar) and put $Y = \{x \in X ; x \leq Tx\}$. From Hausdorff maximal principle [5, p. 33] there exists a maximal chain $L \subset Y$; with $x \in L$; as T is monotone, $T(L) \subset T(Y) \subset T(X)$ is also a chain in T(X) and so, from (2.1), there exists

(*) Nella seduta del 10 marzo 1979.

 $v = \sup T(L)$. Since $x \le Tx \in T(L)$, we get $x \le v$, which gives (again by the monotonicity of T) $Tx \le Tv$, $\forall x \in L$, and therefore (from the definition of the supremum) $v \le Tv$, i.e., $v \in Y$. Now, since $x \le v$, $\forall x \in L$, we infer (from the maximality of L) $v \in L$. As $v = \sup T(L)$ and $Tv \in T(L)$, we get $Tv \le v$ and thus (combining with the preceding relation) v = Tv, completing the proof. Q.E.D.

Remark 2.1. A sufficient condition for (2.1) is

(2.3) every chain $C \subset X$ has a supremum (infimum).

COROLLARY 2.1. Suppose that, in the above theorem, conditions (2.1) and (2.2) are replaced respectively, by

(2.1)' every chain $C \subset T(X)$ has in the same time a supremum and an infimum

$$(2.2)' \qquad either \ x \leq Tx \quad or \quad x \geq Tx,$$

Then, there exist $v, u \in X$ such that (a) v = Tv, u = Tu, (b) $x \leq Tx$ (resp. $x \geq Tx$) $\Rightarrow x \leq v$ (resp. $x \geq u$), (c) $x = Tx \Rightarrow u \leq x \geq v$.

Remark 2.2. Under the conditions of the above corollary, it is justified to call v (resp. u) a maximal (resp. minimal) solution of the equation x = Tx.

3. Let (X, τ) be a topological space, \leq an ordering on X and T a monotone mapping from X into itself. The main result of this Note (a result that may be considered as a "topological" version of Theorem 2.1) is the following.

THEOREM 3.1.Let $(X, \tau), \leq T$ and $x \in X$ satisfy(3.1)both \leq and \geq are closed orderings(3.2) $\overline{T(X)}$ (the closure of T(X)) is both $\supset \leq$ and $\supset \geq$ —compact(3.3)either $x \leq Tx$ or $x \geq Tx$.

Then, there exist $v, u \in X$ such that (a) v = Tv, u = Tu, (b) $x \leq Tx$ (resp. $x \geq Tx$) $\Rightarrow x \leq v$ (resp. $x \geq u$), (c) $x = Tx \Rightarrow u \leq x \leq v$.

Proof. Let $C \subset T(X)$ be an arbitrary chain in T(X). Firstly, we prove that for every $z \in \overline{C}$, $x \in C$, z and x are comparable. Indeed, suppose z and x are not comparable. From (3.1) there exists a neighborhood $U \in \mathscr{V}(z)$ such that, for every $u \in U$, u and x are not comparable. Let $V \in \mathscr{V}(z)$ be arbitrary (without loss of generality we may suppose $V \subset U$). As our assumption implies $z \in \overline{C} \setminus C$, there exists a $y \in C$ such that $y \in V \subset U$, i.e., y and x are not comparable, a contradiction, proving our assertion. In this case, the family $\{\overline{C}(x, \leq); x \in C\} \subset \mathscr{P}(\overline{T(X)})$ is a $\supset \leq$ -directed family of closed sets and so, from (3.2), $\cap \{\overline{C}(x, \leq); x \in C\} = M$ is nonempty and closed. Furthermore,

for every $w \in M$, $C \subset X$ (w, \geq), and this gives $\overline{C} \subset \overline{X}$ (w, \geq) = X (w, \geq). From this fact, M will consist of a single element, i.e., $M = \{z\}$, for some $z \in X$. Firstly, from the above remark, $x \leq z$, $\forall x \in C$. Now, let $u \in X$ be such that $x \leq u$, $\forall x \in C$. This means that $C \subset X$ (u, \geq) and thus $z \in \overline{C} \subset \overline{X}$ (u, \geq) = X (u, \geq), i.e., $z \leq u$, showing that $z = \sup C$. An analogous reasoning may be done for the dual ordering \geq , and so, (2.1)' holds. On the other hand, (3.3) coincides with (2.2)'. Therefore, corollary 2.1 applies, and this completes the proof. Q.E.D.

Let A be a nonempty set and let \leq be an ordering on A. A family $\{T_a; a \in A\}$ of mappings from X into itself is said to be a monotone family iff, for every $a, b \in A$, $a \leq b$, and $x \in X$, we have $T_a x \leq T_b x$.

Now, suppose $\{T_a : a \in A\}$ is a monotone family of monotone mappings from X into itself, having a unique maximal and minimal fixed point.

COROLLARY 3.1. Suppose that, for every $a \in A$, conditions of Theorem 3.1 are satisfied, with T replaced by T_a . Furthermore, for every $a \in A$, let S(a)(resp. s(a)) denote the maximal (resp. minimal) solution of the equation $x = T_a x$. Then, necessarily, the mappings $S: A \to X$ and $s: A \to X$ are monotone.

4. Let $n \ge I$ be a positive integer and let $(\mathbb{R}^n, \|\cdot\|)$ be the euclidean *n*-dimensional space endowed with a norm $\|\cdot\|$. Furthermore let $\{I, J\}$ be a partition of $\{I, \dots, n\}$. Define an ordering \le on \mathbb{R}^n by

i)
$$(x_1, \dots, x_n) \leq (y_1, \dots, y_n)$$
 iff $x_i \leq y_i$, $\forall i \in I, x_j \geq y_j$, $\forall j \in J$

where, in the right hand, \leq denotes the usual ordering on R, and \geq its dual. Clearly, \leq is a closed ordering on \mathbb{R}^n .

In what follows, X (resp. A) denotes the set of all continuous $x: \mathbb{R}_+ \to \mathbb{R}^n$ (resp. $a: \mathbb{R}_+ \to \mathbb{R}_+$). For every $x \in X$, define $||x|| \in A$ by

ii) $||x||(t) = ||x(t)||, \quad \forall t \in \mathbb{R}_+$

and $|x| \in A$ by

iii) $|x|(t) = \sup \{ ||x(s)||; s \in [0, t] \}, \quad \forall t \in \mathbb{R}_+.$

It is well known that X is a locally convex space, with the topology defined by the directed family of seminorms $\mathscr{S} = \{|\cdot|(t); t \in \mathbb{R}_+\}$ Denote also by \leq the ordering on X induced by the ordering \leq on \mathbb{R}^n , in the usual way, i.e.,

iv) $x \leq y$ iff $x(t) \leq y(t)$, $\forall t \in \mathbb{R}_+$.

Clearly, \leq is a closed ordering on X and so is \geq its dual.

Let $t \mapsto \hat{t} \in \mathscr{P}(\mathbb{R}_+)$ be a given mapping. Denote for simplicity $\hat{\mathbb{R}}_+ = \{\hat{t}; t \in \mathbb{R}_+\}$. Let $x^0 \in \mathbb{R}^n$ and $k: X \times \hat{\mathbb{R}}_+ \to \mathbb{R}^n$. Then, we may consider

13. - RENDICONTI 1979, vol. LXVI, fasc. 3.

(formally) the functional differential equation

(4.1)
$$x'(t) = k(x, \hat{t}), \quad \forall t \in \mathbb{R}_+; \quad x(0) = x^0$$

and the associated functional integral inequalities

(4.2)
$$x(t) \leq x^{0} + \int_{0}^{t} k(x, \hat{s}) \, \mathrm{d}s, \quad \forall t \in \mathbb{R}_{+}$$

(4.3)
$$x(t) \ge x^0 + \int_0^t k(x, \hat{s}) \, \mathrm{d}s, \quad \forall t \in \mathbf{R}_+.$$

The main result concerning (4.1)-(4.3) may be stated as follows.

THEOREM 4.1. Suppose there exist $g \in A$, $K : A \times \dot{R}_+ \to R_+$, and $x \in X$ such that (denoting $X_1 = \{x \in X ; \|x\| \le g\}$ and $A_1 = \{a \in A ; a \le g\}$)

- (4.4) $\forall x \in X_1$ the map $t \vdash k(x, \hat{t})$ is continuous
- (4.5) $\forall a \in A_1$ the map $t \vdash K(a, \hat{t})$ is continuous
- (4.6) k is monotone $(x, y \in X_1, x \le y \Rightarrow k(x, \hat{\cdot}) \le k(y, \hat{\cdot}))$
- (4.7) K is monotone $(a, b \in A_1, a \le b \Rightarrow K(a, \hat{\cdot}) \le K(b, \hat{\cdot}))$

(4.8)
$$||k(x, \hat{\cdot})|| \le K(||x||, \hat{\cdot}), \quad \forall x \in X_1$$

- (4.9) $||x^{0}|| + \int_{0}^{t} K(g, \hat{s}) ds \le g(t), \quad \forall t \in \mathbb{R}_{+}$
- (4.10) $x \in X_1$ and satisfies at least one of the associated functional integral inequalities (4.2), (4.3).

Then, there exist $v, u \in X_1$, such that (a) v and u are solutions of (4.1), (b) if $x \in X_1$ is a solution of (4.2) (resp. (4.3)) then $x \leq v$ (resp. $x \geq u$), (c) if $x \in X_1$ is a solution of (4.1), then $u \leq x \leq v$.

Proof. Let $T: X_1 \to X$ be defined, for every $x \in X_1$, by

(4.11)
$$Tx(t) = x^{0} + \int_{0}^{t} k(x, \hat{s}) ds, \quad \forall t \in \mathbb{R}_{+}.$$

From (4.8)+(4.9), $T(X_1) \subset X_1$, i.e., $||Tx|| \leq g$, $\forall x \in X_1$. On the other hand, from (4.7)+(4.8), $||(Tx)'|| = ||k(x, \hat{\cdot})|| \leq K(||x||, \hat{\cdot}) \leq K(g, \hat{\cdot})$, $\forall x \in X_1$. So from the well known Arzelà-Ascoli theorem [4], [5, p. 234], $T(X_1)$ is relatively compact. Finally, (4.6) says that T is monotone. Thus, Theorem 3.1 is entirely applicable, and this completes the proof. Q.E.D. *Remark 4.1.* As in § 2, it is justified to call v (resp. u) a maximal (resp. minimal) solution of (4.1).

Remark 4.2. In the above theorem, the mapping T defined by (4.11) is not in general continuous. Therefore, Banach's fixed point theorem, as well as Schauder-Tychonoff's fixed point theorem (see, e.g., [4]) are not in general applicable.

Remark 4.3. An useful application of these methods might be done in the context of projective functional (differential) equations, [3], [6], in which the class of (abstract) monotone mappings plays an essential role.

References

- [1] S. ABIAN and A. B. BROWN (1961) A theorem on partially ordered sets with applications to fixed point theorems, «Canad. J. Math.», 13, 78–82.
- [2] G. BIRHOFF (1948) Lattice theory, «Amer. Math. Soc. Coll. Publ., rev. ed. », New York.
- [3] P. J. BUSHELL (1976) On a class of Volterra and Fredholm nonlinear integral equations, «Math. Proc. Cambr. Phil. Soc.», 79, 329–335.
- [4] C. CORDUNEANU (1966) Sur certaines équations fonctionelles de Volterra, « Funkc. Ekv. », 9, 119–127.
- [5] J. KELLEY (1975) General topology, Springer Verlag, New York. Heidelberg. Berlin.
- [6] M. TURINICI (1977) Projective metrics and nonlinear projective contractions, «An. St. Univ. 'Al. I. Cuza' Iasi », 23, 271–280.