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Algebra. — Non-splitting unitary perfect polynomials over GF(g)®. -
Nota di JacosT. B. BEARD ]Jr. e MickI1E Sue HARBIN, presentata ™
dal Socio G. ZArra.

R1ASSUNTO. — E stata avanzata la congettura che esista un’infinith di classi distinte
di p% equivalenza di polinomi perfetti unitari irriducibili su GF (%) per ogni primo # e ogni
intero dispari d > 1. La congettura ¢ dimostrata vera nei casi i) p < 97, ii) 2 e GF (#) non
¢ un quadrato, iii) 2 e GF () & un quadrato e tutti gli intervalli interi positivi determinati
da potenze distinte dispari di 8¢ contiene un quadrato, ove GF* () = (8). Inoltre, si & deter-

Y

minato che iii) ¢ soddisfatto da 314 primi p > 97.

1. Introduction and notation. This note continues the study of unitary
perfect polynomials begun in [2], [3] and pursues the conjecture [3] that
the number NSUP(p?) of distinct p%-equivalence classes of non-splitting unitary
perfect polynomials over GF (%) is infinite for each prime p and each odd
integer & > 1. The truth of the conjecture for p << 5 was established in [3],
while Harbin [7] has recently constructed examples which confirm it for
each p << 19. These last examples have led to the theoretical results of this
paper. The one not covered by the general theory (p = 17) is given in Sec-
tion 3 (3.4), and other pertinent examples constructed by Harbin appear in
Table I (Section 4). Recall that from [3; Theorem 4], NSUP (p) > o implies
NSUP (p%) = co for each odd & > 1 whenever there exists a non-splitting
unitary perfect polynomial over GF (p) whose prime factors in GF [p, x]
have degrees powers of 2. The basic results of this paper are techniques for
constructing some such polynomials, and the conjecture is established in the
affirmative to-the extent of

THEOREM I. NSUP (p) > o and NSUP (p%) = oo for each odd integer
d > 1 whenever p satisfies one of the following: '

D 2 <or
i) p=20¢t41 with 2,0)=1 and e<z2,

iiiy p=2¢t41 with (2,0)=1,e>3, and eack integer interval

[67, 0°'] contains a square in GF (p), where GF* (p) = (8) and 67,0 are
distinct odd powers of O

In Section 2 we prove ii), which together with [3; Theorem 5 (p = 2)]

establishes i) with the exceptions p = 17, 41, 73, 89. A proof of iii) is outlined

in Section 3 and it is noted that p = 41, 73, 89 satisfy the condition of iii).

(*) This research was partially supported by Organized Research Grants from the
University of Texas at Arlington. Written while the first author was visiting at Emory Uni-
versity, Atlanta, GA 30322. )

(**) Nella seduta del 13 gennaio 1979.
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Briefly, our terminology remains that of [2]. For monic polynomials
A ,BeGF[g,x],9=p% d =1, Bis called a unitary divisor of A whenever
(B,A/B) = 1. The polynomial Ae GF [¢, x] is unitary perfect over GF (g)
provided the sum &" (A) of the distinct unitary divisors in GF [¢,x] of A
equals A. In general, we write A -> B to indicate ¢* (A) = B. A non-splitting
polynomial over GF (¢) is a monic polynomial over GF (¢) which does not
factor in GF[g, x] as a product of linear irreducibles. Monic irreducibles
P,Qe GF [¢,«] are called primes. For any A, Be GF [¢,x], we say A
is g-equivalen to B if and only if A = B” for some integer /, where ¢ = p¢,
d=1 (3]

The proof techniques are motivated by [2; Theorem 8] and the algo-
rithm [3] used to construct some of our examples. They hinge on the follo-
- wing fact [3]. Let B(x)e GF [¢,x] have the canonical decomposition

7

B (#) = II P (x) as the product of positive powers of distinct primes
i=1
P,(#)e GF [¢,x]. Then if A(x) - B (x) and ée GF (9), we have

(1.1) A(x+é)—>B(x+5)=fIP‘;‘“(x+5),

and the factorization on the right of (1.1) is the canonical decomposition of
B(x + &) in GF [¢,x]. l.e., the polynomials Q; (x) = P;(» 4+ &)e GF[¢, «]
are distinct primes. Finally, recall that 6" is multiplicative and, for powers
of primes, that ¢ (P*) = P* 4 1.

2. When 2 is not a square. Since Theorem 1 is true for p = 2 [3], we
assume hereafter that p > 2. Let p—1 =12¢¢,(2,8)=1,e>1, and let
GF(p) ={o,1,---, p— 1} be represented by the integers modulo p. We
let GF*(p) denote the multiplicative group of non-zero elements of GF (p),
and find it convenient to ‘ order >’ the elements of GF (p) under their natural
orde‘ring as integers. We first consider the case ¢ = 1, a necessary and suf-
ficient condition that — 1 is not a square in GF (p).

THEOREM 2. NSUP (p) > o whenever — 1 is not a square in GF (p).

Proof. Since one-half of the elements of GF* (p) are squares, let £ be
the smallest positive integer such that — (£ + 1) is a square in GF (p). Then
2241, --,22 + £are prime in GF [p,x]and 2 + £+ 1 =(x +a) (x + )
for some a,be GF (). Thus we have the canonical decompositions exhi-
bited in

@1 2@+ D @@L EFHE ) ().

By (1.1), from (2.1) we have for 0 <: <p—1,

. k . k
@2) E—lle—p+1->c—ita@—i+d I E—i +
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Since the quadratic primes (x — #,)? —I— 7y and (x —7,)? + j, are distinct unless
p— p—1

7, = t,andj; = 7,, and evidently H (x—ip = H (x—7 4+ a)(x —17 -+ b),

then the polynomial f(x) having canonlcal decomposmon given by

p—1 k
(2.3) fe) =TTl [ — 2 + /]

i=0 j=0

is a non-splitting unitary perfect polynomial over GF (p) (having precisely
linear and quadratic prime factors).

The general case when — 1 is a square in GF (), i.e., e > 2, is com-
prised of two natural subcases, ¢ = 2 (2 is not a square in GF (p)) and ¢ > 3
(2 is a square in GF (p)), by virtue of the proof of

THEOREM 3. NSUP (p) > 0 whenever p—1=4¢,(2,8)=1.

Proof. Let 6 be a primitive root modulo p, ie., GF (») = (8), and
consider the canonical decompositions on the left and extreme right of

(2.4) 2t >t 41 = at— 0% = (a2  07) (4% 4 0%) .
It will become clear that we may assume 2 <0 < 0¥ <p—2.

Case 1. Assume that no square in GF” (p) lies between 6 and 63¢, and
let # = 03— 0!— 1. Then 4% + 6% -/ is prime for each /,0 </ <#%, and
using (2.4) we have

3
(2.3) 20 TT (22 -+ 6 1 7) (a2 - 0302 — (a2 + 032 - 1]
1=0

k

11 (22 + 0f 1) (a2 + 0302,

1=0
Both sides iof (2.5) are completely factored over GF (p) excepting
(2.6) (@402 + 1 =+ 0% 409 (x®+ 0% —0) =22 (x*— 20,
and we examine z* —2 6%  Since (2/p) =(—1) L [1}, 2 is a

non-square in GF (p), so that the product 2 0 is a square in GF (). Thus
for some e, , ¢, (2.6) becomes

(27) (4 B0 1 — (0 (2 4 %)
Hence (2.5) becomes
k
(2.8) 2t 11 (% + 0t 40 (22 + 6% -
1=0
k
= 2% (x + 0%) (v + 0%) I (2 4 0¢ - 7) (a* + 6%,
l==0

both sides of (2.8) now completely factored in GF [p,x]. From (1.1), the
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distinctness of the translates by 7,0 <7 < p— 1, of the quadratic primes
p—-1 p—1
in (2.8) (consider the coefficients of x), and [T (x —¢)¢= IT (x — o)y
i=0 i=0
(x —7 -+ 0 (x —7 + 6%), the polynomial f(x) with the canonical decom-
position given by
p-1 k

o) F) =TT TT (i)t [ — i)t + 0 1] [ — % + 050

is unitary perfect over GF (p).

Case 1. Now assume that some square a € GF () satisfies 6! < ¢ < 68
Let %, , £; be the smallest positive integers such that 6% 4+ £, 4 1, 8% + £, + 1
are squares in GF* (p) (recall p — 1 is a square), say

(2.10) 220 Ay 1= — 0% = (& 4 0%) (v + 0%,
(2.17) 22 0% by 1 =2 — 0% = (x4 6%) (x 4 67F%).

From (2.4), (2.10), (2.11) we have
kg kg :
(2.12) x41__[(x2+9‘—!—j)l._l_[(x2—l—03t—l—l)—+
=0 T =0
I ks
(2 -+ 0%) (v + 0%FD) (x + 0%) (x + 0% TT (a2 + 0t 4+ ) TT (2® + 03+ 7).
=0 1=0

Arguing as before, the polynomial f (x) with canonical decomposition given
by

p-1 ky ks
(13) f@ =T —0 I (r— a2+ 0"+ 71 IL (v — o + 0% 41
is uni'gary perfect over GF (p).

3. When 2 is a square. A partial generalization of Theorem 3 is available
as indicated by the proof of Case II.

THEOREM 4. NSUP (p) >0 whenever p—1 =2t with (2,¢) =1,
¢ >3, and cach positive integer interval [0, 07’ contains a square in GF (p),
where GF* (p) = (0) and O, 0" are distinct odd powers of ¢

Proof. The condition of the theorem is equivalent to asking that each
integer interval [0°?, 0°U*Y] contain a square, 1 <j <2°"'—1 where
0" <...< 0% ig the natural ordering of the odd powers of 6¢ as positive
integers. Base the argument indicated by the proof of Theorem 3, Case II
on the canonical decomposition of ¢* (™) = P given by

2°—1

(3.1) 2 1 =Tl@2+6%, ; odd
j=1
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One obtains a unitary perfect polynomial f(x) over GF () whose canonical
decomposition has the form given by

21 Fy

(3.2) f @) = H(x—z)z‘ II II [(x—ap + 0% +7, j odd
The complete factorization of x'% 4+ 1 in GF {17, x],
(33) A 1=@ 3 45 6) (@ + ) (@ 10) (@ + 1)
(@ + 12) (2 + 14),

indicates some of the difficulties encountered when 2 is a square in GF (p)
and the odd powers of 6 are not interlaced with squares. This particular
gap in the theory is filled by the unitary perfect f (x)e GF [17, x] of degree
153 having the canonical decomposition given by

(3.4) F@ =TI @— Il (@ —ip +16 G —9) +1].

To conclude our proof of Theorem 1, we note that 41 =23 .5 + 1,
73 =2%.9 + 1, and 89 =2% - 11 4 1 fulfill the hypothesis of Theorem 4:
fora® +1 = (2*+3) (2* + 14) (2% + 27) (+* + 38)&e GF [41 , x] we have *‘ the
squares 4,16, 31,39 € GF (41); for 2% + 1 = (#® - 10) (4 + 22) (22 + 51I)
(#* +-63)e GF [73,x] ‘“the” squares 12,23,54,64€ GF (73); and for
2+ 1= (2% + 12) (22 + 37) (2% +52) (x2 4+ 77)e GF [89, x] “‘ the” squares
16,39, 53, 78€ GF (89).

4. Remarks and examples. The extent of the primes p which satisfy
the condition of Theorem 4 is not known, though we hesitantly conjecture
that for each fixed ¢ = 3 there exists an integer #, such that p = 2¢# -+ 1 sati-
sfies the condition for all odd admissible # > #,7. A computer study of 338
cases run on a Univac 9o/80 at Emory University using input data from [8]
shows the condition to be satisfied for the given values of ¢ and admissible
t>3 excluding the 21 exceptional values of #>>3 for which the condition fails:

e Admissible t =3 . Exceptional values of ¢

3 £ <1,251 none

4 t.< 603 | none

5 z < 365 3, 11, 29

6 2 < 465 3,75, 229, 247, 337, 423, 429

7 <167 5,9, 11, 21, 35, 75, 89, 105, 119, 125, 165

(*) Added at galley: Beard, J. K. Doyle, and K. I. Mandelberg have recently proved
that 73 = 1.
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The condition fails to be satisfied whenever # = 1, since the number of pairs
of consecutive quadratic non-residues is positive for p >3 [1;p. 132].

The examples in Table I of non-splitting unitary perfect polynomials
over GF (p) were obtained by Harbin using [4]-[6], and are representatives
of p-equivalence classes distinct from those in [3] and those determined by
the proof of Theorem 1. The totality of these examples and theory now esta-
blish NSUP (5) > 7, NSUP () =3, NSUP (11) = 2, with NSUP (2) = 33
and NSUP (3) > 16 unchanged since [3] to our knowledge.

TABLE I

Some New Non-splitting Unitary Perfect p-Class Representatives.

7 | DEGREE

COMPLETE FACTORIZATION

7 105 PP (2 +2P G+ 24+ 205+ 286+ ) (4 +2P)
G+x+22)(G+22+2)0 +324+23)0 + 472+ 2%
(5+52+2H6+6x++>U+2xr+522+24(5 +2x + 5224+ 2%
(2+s52+22+28+2Y(3 F5x 22+ 284+ 2%

54+4x+322 42224246+ 42 4322 +22%4 29
(142x+4224+328+aY) (24224 422325 4+ 2%

GHr2r+422 4428 +2 6+ 2244224 443+ 29
B3+322+522+aN) @4 +322+52° 2% (1 + 61 422+ 6%+ 2%)
(24+6x 4224648424

224 | 28+ 282+ DG+ 25U+ 205 + 28 (6 + 2 (1 + 22)3

(2 + 22204 + 2223 + 2 + 2P (4 + 2 -+ 222 (6 + x + 22)?
H2z+22030@3 +22+ 222G + 22 + 22201 + 372 -+ 22)2
(5+32+2"2(6+ 32+ 2221 + 42 + 22%(5 + 42 + 228

6+ 42 +22(2 452 +228(3 + 52 +222(5 + 52 + 22)°
(3462 + 2724+ 6x+ 2226 + 62 +22)2(3 + 22 + 24
(5+a422+ 206 +422+2H 2+ 62+ 23 +29(3 + 62 + 2%+ 2%
2+zr+422+283 420342+ 222+ 228 + 1Y
4+zr+222+222 4292+ 52+ 622+ 223+ 24

(5 +2+3224+2%) 32 2-+3 224323484 + 22 + 322 4 343 + 24)
(5 +6 2-+4 22 +2H(3+5 2432244 23428 (4452 + 322+ 443 + 29)
B+6x+222+525+ 2% (4 + 62+ 2224+ 525 + 24
(4+22+622+ 528+ 2 +2r+63+203 424 643+ 29
(2 + 6%+ 42%+ 6% 4 29

11 55 B +2P@A2PE 2P U+ 236+ 286 + 207 + 23

(8 +2)°(9 + 2)° (10 + 2)3 (9 + 22) (1 -+ x + 22) (10 + 2 % + 2?)
B+3x+2)E+a2+22) (74 52422 (7 + 62 + 22)
(24+72+2%) (3 + 8242 (10 4 9z + 22) (1 + 102 + 22
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