Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Shizuko Sato

On holomorphically subprojective complex manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 66 (1979), n.1, p. 12-18.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1979_8_66_1_12_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - On holomorphically subprojective complex manifolds. Nota di Shizuko Sato, presentata (*) dal Socio G. Sansone.

Abstract

RiAssunto. - Si discutono varie relazioni fra la classe delle varietà complesse olomorficamente sottoproiettive e quelle della varietà complesse H -S-proiettivamente piatte. Si considera in particolare il caso in cui le varietà in esame siano kähleriane.

In this paper, we shall discuss relations between holomorphically subprojective complex manifolds and HS-projectively flat complex manifolds and, in the last section, deal with Kählerian manifolds.
\S I. Let $\mathrm{M}^{2 m}$ be a complex manifold with a symmetric F-connection $\Gamma_{j i}^{h}$, i.e. a symmetric affine connection with respect to which the complex structure F is covariant constant. If there exists a complex coordinate system such that every holomorphically planar curve is given by $m-2$ homogeneous linear equations in this system and one other equation that need not be linear, then M is called a holomorphically subprojective complex manifold. The following theorem is known:

Theorem A [6]. $\mathrm{M}^{2 m}(m>2)$ is a holomorphically subprojective complex manifold if and only if there exists a local real coordinate system (x^{i}) such that

$$
\Gamma_{j i}^{h}=\rho_{(j} \delta_{i)}^{h}+\tilde{\rho}_{(j} \mathrm{F}_{i)}^{h}+f_{j i} x^{h}-f_{j r} \mathrm{~F}_{i}^{r} \tilde{x}^{h}\left(f_{[j i]}=f_{r[j} \mathrm{F}_{i]}^{r}=0\right),
$$

where $\rho($ resp. f) is a certain covariant vector field (resp. covariant tensor field) and we define $\tilde{\rho}_{j}=-\mathrm{F}_{j}^{r} \rho_{r}$ and $\tilde{x}^{h}=\mathrm{F}_{r}^{h} x^{r}$.

Now we assume that there is given a vector field v in M and consider a holomorphically subplanar curve $x^{h}=x^{h}(t)$ with respect to v, i.e.

$$
\frac{\mathrm{d}^{2} x^{\bar{h}}}{\mathrm{~d} t^{2}}+\Gamma_{j i}^{h} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} t} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} t}=\alpha(t) \frac{\mathrm{d} x^{h}}{\mathrm{~d} t}+\beta(t) \mathrm{F}_{r}^{h} \frac{\mathrm{~d} x^{r}}{\mathrm{~d} t}+\gamma(t) v^{h}+\varepsilon(t) \tilde{v}^{h}
$$

In [6], it is known that two symmetric F-connections $\Gamma_{j i}^{h}$ and $\bar{\Gamma}_{j i}^{h}$ have all holomorphically subplanar curves with respect to the same vector field v in common if and only if

$$
\bar{\Gamma}_{j i}^{h}=\Gamma_{j i}^{h}+\rho_{(j} \delta_{i)}^{h}+\tilde{\rho}_{(j} \mathrm{F}_{i)}^{h}+f_{j i} v^{h}-f_{j r} \mathrm{~F}_{i}^{r} \tilde{v}^{h}\left(f_{[j i]}=f_{r[j} \mathrm{F}_{i]}^{r}=0\right) .
$$

This correspondence $\bar{\Gamma}_{j i}^{h} \rightarrow \Gamma_{j i}^{h}$ is called a holomorphically subprojective transformation. Specially, a complex manifold with a symmetric F-con-
nection which is obtained from a complex linear space C^{m} by a holomorphically subprojective transformation is called an HS-projectively flat complex manifold.

Finally, let L and ∇_{j} be the operators of Lie differentiation with respect to v and the covariant differentiation with respect to a given connection. Then a vector field v is called an HSP-transformation if it satisfies

$$
\begin{equation*}
\underset{v}{\mathrm{~L}} \Gamma_{j i}^{h}=\psi_{\left(j \delta_{i)}\right.}^{h}+\tilde{\psi}_{(j} \mathrm{F}_{i)}^{h}+\psi_{j i} v^{h}-\psi_{j r} \mathrm{~F}_{i}^{r} \tilde{v}^{h}\left(\psi_{[j i]}=\psi_{r[j} \mathrm{F}_{i]}^{r}=0\right) \tag{I.I}
\end{equation*}
$$

and if it satisfies

$$
\begin{equation*}
\nabla_{j} v^{h}=a \delta_{j}^{h}+b \mathrm{~F}_{j}^{h}+\alpha_{j} v^{h}+\tilde{\alpha}_{j} \tilde{v}^{h}, \tag{I.2}
\end{equation*}
$$

then it is called contravariant analytic almost K -torse-forming.
§ 2. Let $\mathrm{M}^{2 m}(m>2)$ be an HS-projectively flat complex manifold. Then the symmetric F-connection $\Gamma_{j i}^{h}$ takes the form, for a suitable coordinate system (x^{i}),

$$
\begin{equation*}
\Gamma_{j i}^{h}=2 \varphi_{(j} \delta_{i)}^{h}+2 \tilde{\varphi}_{(j} \mathrm{F}_{i)}^{h}+\varphi_{j i} v^{h}-\varphi_{j r} \mathrm{~F}_{i}^{r} \tilde{v}^{h}\left(\varphi_{[j i]}=\varphi_{r[j} \mathrm{F}_{i]}^{r}=0\right), \tag{2,I}
\end{equation*}
$$

where φ_{j} (resp. $\varphi_{j i}$) is a certain covariant vector field (resp. covariant tensor field).

In this section, we assume that the vector field v^{h} is an analytic almost K-torse-forming one satisfying (I.2). The curvature tensor $\mathrm{R}_{j i k}^{h}$ of $\Gamma_{j i}^{h}$ can be written as below:

$$
\begin{align*}
\mathrm{R}_{j i k}^{h}= & -2\left(u_{k[j} \delta_{i]}^{h}-\mathrm{F}_{k}^{r} u_{r[j} \mathrm{F}_{i]}^{h}+\mathrm{U}_{k j i} v^{h}-\mathrm{F}_{k}^{r} \mathrm{U}_{r j i} \tilde{v}^{h}\right. \tag{2.2}\\
& \left.-\nabla_{[j} \varphi_{i]} \delta_{k}^{h}-\nabla_{[j} \tilde{\varphi}_{i]} \mathrm{F}_{k}^{h}\right),
\end{align*}
$$

where we put
(2.3) $u_{j i}=-\nabla_{i} \varphi_{j}-\varphi_{j} \varphi_{i}+\tilde{\varphi}_{j} \tilde{\varphi}_{i}+\left(a-v^{r} \varphi_{r}\right) \varphi_{j i}+\left(b-v^{r} \tilde{\varphi}_{r}\right) \varphi_{j s} \mathrm{~F}_{i}^{s}$,
(2.4) $\mathrm{U}_{k j i}=-\nabla_{\left[j \varphi_{i] k}\right.}-\alpha_{\left[j \varphi_{i] k}\right.}-\tilde{\alpha}_{[j} \varphi_{i] r} \mathrm{~F}_{k}^{r}+\varphi_{r\left[j \varphi_{i j k}\right.} v^{r}-\varphi_{r}\left[j \varphi_{i] s} \mathrm{~F}_{k}^{s} \tilde{v}^{r}\right.$.

Now we consider the differential equation

$$
\begin{equation*}
\nabla_{j} z_{i}=-2 z_{(j} \varphi_{i)}+2 \tilde{z}_{(j} \tilde{\varphi}_{i)}-z_{r} v^{r} \varphi_{j i}+z_{r} \tilde{v}^{r} \varphi_{j s} \mathrm{~F}_{i}^{s} \tag{2.5}
\end{equation*}
$$

By virtue of (1.2) and (2.2) $\sim(2.5)$, we obtain

$$
\nabla_{k} \nabla_{j} z_{i}-\nabla_{j} \nabla_{k} z_{i}=-\mathrm{R}_{k j i}^{\gamma} z_{\gamma},
$$

which means that the integrability condition of (2.5) is satisfied identically and then there exist $2 m$ linearly independent solutions $z_{i}^{(a)}$. Since $\nabla_{[j} z_{i]}=0, z_{i}^{(a)}$ are gradient covariant vectors and if we put $z_{i}^{(a)}=\frac{\partial \bar{x}^{a}}{\partial x^{i}}, \bar{x}^{a}=\bar{x}^{a}\left(x^{i}\right)$ are $2 m$ linearly independent functions defining a transformation of coordinates.

Thus, by the transformation law under $\bar{x}^{a}=\bar{x}^{a}\left(x^{i}\right)$, it is easily seen that

$$
\bar{\Gamma}_{b c}^{a}=-\frac{\partial x^{j}}{\partial \bar{x}^{b}} \frac{\partial x^{i}}{\partial \bar{x}^{c}} \nabla_{j} z_{i}^{(\alpha)}=2 \bar{\varphi}_{(b} \delta_{c)}^{a}+2 \tilde{\bar{\varphi}}{ }_{(b} \overline{\mathrm{F}}_{c)}^{a}+\bar{\varphi}_{b c} \bar{v}^{a}-\bar{\varphi}_{b d} \overline{\mathrm{~F}}_{c}^{d} \tilde{\bar{v}}^{a},
$$

where $\bar{\varphi}_{b}$, etc. are components in coordinates $\left(\bar{x}^{a}\right)$. We shall prove
Theorem i. Let $\mathbf{M}^{2 m}(m>2)$ be an HS-projectively flat complex manifold with a symmetric F -connection given by (2.1). Then M is a holomorphically subprojective complex manifold under the following conditions:
(1) v^{h} in (2.1) is an analytic almost K -torse-forming vector field satisfying (1.2),
(2) v^{h} and \tilde{v}^{h} are HSP-transformations,
where $\left(a-v^{r} \varphi_{r}\right)^{2}+\left(b-v^{r} \tilde{\varphi}_{r}\right)^{2} \neq 0$.
Proof. We put $f=a-v^{r} \varphi_{r}$ and $g=b-v^{r} \tilde{\varphi}_{r}$. Since v^{h} is an HSP-transformation, in [4] it is known that

$$
\begin{equation*}
a_{k}-a \alpha_{k}+b \tilde{\alpha}_{k}+u_{r k} v^{r}=0 \quad, \quad b_{k}-a \tilde{\alpha}_{k}-b \alpha_{k}-u_{r k} \tilde{v}^{r}=o^{(1)} \tag{2.6}
\end{equation*}
$$

which imply that $\tilde{f}_{j}=g_{j}$ holds good by virtue of (I.2) and (2.3). Hence, from (I.I) and conditions, $\xi^{h}=\left(\mathrm{I} / f^{2}+g^{2}\right)\left(f v^{h}-g \tilde{v}^{h}\right)$ is an HSP-transformation and an analytic almost K -torse-forming vector field satisfying

$$
\begin{aligned}
\nabla_{j} \xi^{h}= & a^{\prime} \delta_{j}^{h}+b^{\prime} F_{j}^{h}+\left(\alpha_{j}-\gamma_{i}\right) \xi^{h}+\left(\tilde{\alpha}_{j}-\tilde{\gamma}_{j}\right) \tilde{\xi}^{h},\left(\gamma_{j} \stackrel{\text { put }}{=}\left(\mathrm{I} / f^{2}+g^{2}\right)\right. \\
& \left.\left(f_{j}+g g_{j}\right)\right), \xi^{r} \varphi_{r}-a^{\prime}=-\mathrm{I} \quad, \quad \xi^{r} \tilde{\varphi}_{r}-b^{\prime}=\mathrm{o},
\end{aligned}
$$

from which we may assume that

$$
\begin{equation*}
a=v^{r} \varphi_{r}+\mathrm{I} \quad \text { and } \quad b=v^{r} \tilde{\varphi}_{r} \tag{2.7}
\end{equation*}
$$

and then taking account of (2.3) and (2.6), we get

$$
\begin{equation*}
\alpha_{k}=\varphi_{k}+\varphi_{k r} v^{r} . \tag{2.8}
\end{equation*}
$$

Now we prove that the solutions $z_{j}^{(a)}=\frac{\partial \bar{x}^{a}}{\partial x^{j}}$ of (2.5) satisfies $z_{r}^{(a)} v^{r}=\bar{x}^{a}$. Making use of (1.2) and (2.5), we have

$$
\begin{gathered}
\nabla_{k}\left(z_{r} v^{r}\right)=\left(a-v^{r} \varphi_{r}\right) z_{k}-\left(b-v^{r} \tilde{\varphi}_{r}\right) z_{k}+z_{r} v^{r}\left(\alpha_{k}-\varphi_{k}-\varphi_{k s} v^{s}\right) \\
+z_{r} \tilde{v}^{r}\left(\tilde{\alpha}_{k}-\tilde{\varphi}_{k}+\mathbf{F}_{k}^{t} \varphi_{t s} v^{s}\right)
\end{gathered}
$$

and substituting (2.7) and (2.8), we obtain that $\nabla_{k}\left(z_{r} v^{r}\right)=z_{k}$, which implies that $z_{r}^{(a)} v^{r}=\bar{x}^{a}$ and $z_{r}^{(a)} \tilde{v}^{r}=\overline{\bar{x}}^{a}$, i.e. $\bar{v}^{a}=\bar{x}^{a}$ and $\tilde{\tilde{v}}^{a}=\tilde{\bar{x}}^{a}$.

Hence we have $\bar{\Gamma}_{b c}^{a}=2 \bar{\varphi}{ }_{(b} \delta_{c)}^{a}+2 \tilde{\bar{\varphi}}_{(b} \overline{\mathrm{F}}_{c)}^{a}+\bar{\varphi}_{b c} \bar{x}^{a}-\bar{\varphi}_{b d} \overline{\mathrm{~F}}_{c}^{d} \tilde{\bar{x}}^{a}$ and proved Theorem I by virtue of Theorem A.
(1) For a function f, we put $\nabla_{j} f=f_{j}$.
§3. In this section, we consider an HS-projectively flat Kählerian manifold $\mathrm{M}^{2 m}(m>2)$ and replace the symmetric F -connection $\Gamma_{j i}^{h}$ in the preceding section with the Christoffel symbol $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$. Also we assume that v^{h} is an analytic K-torse-forming vector field satisfying (I.2). Then $\nabla_{\left[j \varphi_{i]}\right.}=0$ is valid in [8] and v^{h} and \tilde{v}^{h} are analytic HSP-transformations, see [5, 7].

Now we consider a transformation of φ_{j} in (2.I). If $\left\{\begin{array}{c}h \mid \\ j i\end{array}\right\}$ may be transformable to the form, by a suitable transformation $\bar{x}^{a}=\bar{x}^{a}\left(x^{i}\right)$ of coordinates,
then we indicate quantities corresponding to $\mathrm{R}_{j i k}{ }^{h}, u_{j i}$ and $\mathrm{U}_{k j i}$ in $\S 2$ by $\overline{\mathrm{R}}_{j i k}{ }^{h}, \bar{h}_{j i}$ and $\overline{\mathrm{V}}_{k j i}$. We have the following

Lemma 3.1. If $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ given by (2.1) is transformed to the form of (3.1) by a suitable transformation of coordinates, then $u_{j i}=h_{j i}$ and $\mathrm{U}_{k j i}=\mathrm{V}_{k j i}$.

Proof. W ϵ put $\phi_{j}=\varphi_{j}-\psi_{j}, w_{j i}=u_{j i}-v_{j i}$ and $W_{k j i}=U_{k j i}-\mathrm{V}_{k j i}$ and then we have

$$
\begin{gather*}
w_{[j i]}=\nabla_{[j} \phi_{i]}=0 \quad, \quad w_{r[j} \mathrm{F}_{i]}^{r}=\nabla_{[j} \tilde{\phi}_{i]}, \tag{3.2}\\
w_{r j} v^{r}+\mathrm{F}_{j}^{s} w_{s r} v^{r}=2 \nabla_{[r} \tilde{\phi}_{j]} \tilde{v}^{r}=-2 \nabla_{[r} \tilde{\phi}_{s]} v^{r} \mathrm{~F}_{j}^{s}, \tag{3.3}\\
-w_{k[j} \delta_{i]}^{h}+\mathrm{F}_{k}^{r} w_{r[j} \mathrm{F}_{i]}^{h}-\mathrm{W}_{k j i} v^{h}+\mathrm{F}_{k}^{r} \mathrm{~W}_{r j i} \tilde{v}^{h}+\nabla_{[j} \tilde{\phi}_{i]} \mathrm{F}_{k}^{h}=0 . \tag{3.4}
\end{gather*}
$$

At first we prepare necessary formulas by making use of (3.3) ~(3.4).
(3.5) $(2 m-1) w_{k i}+\mathrm{F}_{k}^{r} \mathrm{~F}_{i}^{s} w_{r s}+2\left(\mathrm{~W}_{k i r} v^{r}-\mathrm{F}_{k}^{s} \mathrm{~W}_{s i r} \tilde{v}^{r}+\nabla_{[s} \tilde{\phi}_{i} \mathrm{~F}_{k}^{s}\right)=0$,

$$
\begin{align*}
(m+\mathrm{I}) & \nabla_{[j} \phi_{i]}=\mathrm{W}_{r j i} v^{r}=0 \quad, \quad(m+\mathrm{I}) \nabla_{[j} \tilde{\phi}_{i]}=-\mathrm{W}_{r j i} \tilde{v}^{r} \tag{3.6}\\
2\left(\mathrm{~W}_{k i r} v^{r}\right. & \left.+\mathrm{F}_{k}^{s} \mathrm{~W}_{s i r} \tilde{v}^{r}\right) v^{h}+2\left(\mathrm{~W}_{k i r} \tilde{v}^{r}-\mathrm{F}_{k}^{s} \mathrm{~W}_{s i r} v^{r}\right) \tilde{v}^{h} \tag{3.7}\\
& -\left(w_{k r} v^{r}+\mathrm{F}_{k}^{s} w_{s r} \tilde{v}^{r}\right) \delta_{i}^{h}+\left(\mathrm{F}_{k}^{s} w_{s r} v^{r}-w_{k r} \tilde{v}^{r}\right) \mathrm{F}_{i}^{h} \\
& -2\left(\nabla_{[r} \tilde{\phi}_{i]} \tilde{v}^{r} \delta_{k}^{h}-\nabla_{[r} \tilde{\phi}_{i]} v^{r} \mathrm{~F}_{k}^{h}\right)=\mathrm{o}
\end{align*}
$$

(3.8) $2(m-2) \nabla_{[r} \tilde{\phi}_{k]} \tilde{v}^{r}+\left(w_{k r} v^{r}+\mathrm{F}_{k}^{s} w_{s r} \tilde{v}^{r}-2 \mathrm{~F}_{k}^{s} \mathrm{~W}_{s r t} v^{r} \tilde{v}^{t}\right)=0$,
where we use $\mathrm{W}_{k(i j)}=0$.
Next we choose any I-form η_{i} orthogonal to v and put $\eta=\eta_{r} \tilde{v}^{r}$. If we transvect (3.7) with η_{h}, then we have

$$
\begin{gather*}
2 \eta\left(\mathrm{~W}_{k i r} \tilde{v}^{r}-\mathrm{F}_{k}^{s} \mathrm{~W}_{s i r} v^{r}\right)-\left(w_{r_{r}} v^{r}+\mathrm{F}_{k}^{s} w_{s r} \tilde{v}^{r}\right) \eta_{i} \tag{3.9}\\
-\left(\mathrm{F}_{k}^{s} w_{s r} v^{r}-w_{k r} \tilde{v}^{r}\right) \tilde{\eta}_{i}-2\left(\nabla_{[r} \tilde{\phi}_{i]} \tilde{v}^{r} \eta_{k}+\nabla_{[r} \tilde{\phi}_{i 1} v^{r} \tilde{\eta}_{k}\right)=0,
\end{gather*}
$$

from which it follows that $\mathrm{F}_{k}^{s} w_{s r} v^{r}-w_{k r} \tilde{v}^{r}+2 \mathrm{~W}_{k r t} v^{r} \tilde{v}^{t}=0$ by virtue of (3.2), (3.3), (3.6) and $\mathrm{W}_{k(j i)}=0$ and moreovet from (3.8) we get $w_{k r} v^{r}=w_{k r} \tilde{v}^{r}=\nabla_{[r} \tilde{\phi}_{k]} \tilde{v}^{r}=\nabla_{[r} \tilde{\phi}_{k]} v^{r}=0$. Substituting the last equation into (3.9), it is clear that

$$
\begin{equation*}
\mathrm{F}_{k}^{r} w_{r i}+2 \mathrm{~F}_{k}^{s} \mathrm{~W}_{s i r} v^{r}=0 \quad, \quad \mathrm{~W}_{k i r} \tilde{v}^{r}-\mathrm{F}_{k}^{s} \mathrm{~W}_{s i r} v^{r}=0 \tag{3.10}
\end{equation*}
$$

which imply that $w_{r[i} \mathrm{F}_{k]}^{r}+2 \mathrm{~W}_{[k i] r} \tilde{v}^{r}=0$ and comparing with (3.6), $\nabla_{[i} \tilde{\phi}_{k]}=0$ holds good.

Hence we obtain the desired equations $w_{k i}=0$ and $W_{i j i}=0$ by virtue of (3.2), (3.4), (3.5) and (3.10). q.e.d.

In the case of Lemma 3.1, we have $\nabla_{\left[j \varphi_{i]}\right.}=\nabla_{\left[j \psi_{i]}\right.}=0$ and $\nabla_{[j} \tilde{\varphi}_{i]}=\nabla_{[j} \tilde{\psi}_{i]}$. If we put $z_{i}^{(a)}=\frac{c \bar{x}^{a}}{\partial x^{i}}$ for the transformation $\bar{x}^{a}=\bar{x}^{a}\left(x^{i}\right)$ of coordinates, then we have

$$
\begin{aligned}
\left\{\begin{array}{c}
\bar{a} \\
b c
\end{array}\right\} & =2 \bar{\psi}_{(b} \delta_{c)}^{a}+2 \tilde{\bar{\psi}}_{\left(b \overline{\mathrm{~F}}_{c)}^{a}\right.}+\bar{\psi}_{b c} \bar{v}^{a}-\bar{\psi}_{b d} \overline{\mathrm{~F}}_{c}^{d} \tilde{\bar{v}}^{a} \\
& \left.=\frac{\partial x^{j}}{\partial \bar{x}^{b}} \frac{\partial x^{i}}{\partial \bar{x}^{c}}\left(\begin{array}{l}
h \\
\langle j i
\end{array}\right\} \frac{c \bar{x}^{a}}{\partial x^{h}}-\frac{\partial^{2} \bar{x}^{a}}{\partial x^{j} \partial x^{i}}\right),
\end{aligned}
$$

from which it follows that

$$
\nabla_{j} z_{i}^{(a)}+2 z_{(j}^{(a)} \psi_{i)}-2 \tilde{z}_{j}^{(a)} \tilde{\psi}_{i)}+v^{r} z_{r}{ }^{(a)} \psi_{j i}-\tilde{v}^{r} z_{r}{ }^{(a)} \psi_{j s} \mathrm{~F}_{i}^{s}=0
$$

Thus it is easily seen that $2 m$ covariant vectors $z_{i}^{(a)}$ must satisfy

$$
\begin{align*}
& \nabla_{j} z_{i}=-2 z_{(j} \psi_{i)}+2 \tilde{z}_{(j} \tilde{\psi}_{i)}-v^{r} z_{r} \psi_{j i}+\tilde{v}^{r} z_{r} \psi_{j s} \mathrm{~F}_{i}^{s} \tag{3.1I}\\
&\left(\psi_{[j i]}=\psi_{r[j} \mathrm{F}_{i]}^{r}=0\right) .
\end{align*}
$$

In the following, we consider a converse of Lemma 3.I.
Lemma 3.2. If we choose any closed 1 -form ψ_{j} such that

$$
\begin{equation*}
\left(a-v^{r} \psi_{r}\right)^{2}+\left(b-v^{r} \tilde{\psi}_{r}\right)^{2} \neq 0 \quad, \quad \nabla_{[j} \tilde{\psi}_{i]}=\nabla_{[j} \tilde{\varphi}_{i]} \tag{3.12}
\end{equation*}
$$

then $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ given by (2.1) can be transformed to the form of (3.1) by a suitable transformation of coordinates.

Proof. We define $\psi_{j i}$ by

$$
\begin{equation*}
h_{j i}=u_{j i} \tag{3.13}
\end{equation*}
$$

and then $\psi_{[j i]}=\psi_{r[j} \mathrm{F}_{i]}^{r}=0$ hold good by virtue of (3.12). Hence the integrability condition of (3.II) is

$$
\begin{equation*}
-\mathrm{R}_{j i k}^{r} z_{r}=2\left(h_{k}\left[\delta_{i]}^{s}-\mathrm{F}_{k}^{r} h_{r[j} \mathrm{F}_{i]}^{s}+\mathrm{V}_{k j i} v^{s}-\mathrm{F}_{k}^{r} \mathrm{~V}_{r j i} \tilde{v}^{s}-\nabla_{[j} \tilde{\psi}_{i]} \mathrm{F}_{k}^{s}\right) z_{s}\right. \tag{3.14}
\end{equation*}
$$

Here, with straightforward calculation, we obtain

$$
\begin{gather*}
\nabla_{j} h_{k i}-\nabla_{i} h_{k j}=\mathrm{R}_{j i k}^{r} \psi_{r}+2\left(h_{k[j} \psi_{i]}+\mathrm{F}_{k}^{r} h_{r[j[j} \tilde{\psi}_{i]}+\tilde{\psi}_{k} \nabla_{[j} \tilde{\psi}_{i j}\right) \tag{3.15}\\
-2\left(\left(a-v^{r} \psi_{r}\right) \mathrm{V}_{k i i}+\left(b-v^{r} \tilde{\psi}_{r}\right) \mathrm{F}_{k}^{s} \mathrm{~V}_{s j i}+\psi_{k[j} \beta_{i]}-\psi_{k r} \mathrm{~F}_{[j}^{r} j_{i j}\right),
\end{gather*}
$$

where we put

$$
\beta_{i}=a_{i}-a \alpha_{i}+b \tilde{\alpha}_{i}+h_{r i} z^{r} \quad \text { and } \quad \gamma_{i}=b_{i}-a \tilde{\alpha}_{i}-b \alpha_{i}-h_{r i} \tilde{v}^{r}
$$

Since v is an HSP-transformation, we have

$$
\begin{equation*}
\nabla_{j} u_{k i}-\nabla_{i} u_{k j}=-2 a \mathrm{U}_{k j i}-2 b \mathrm{~F}_{k}^{r} \mathrm{U}_{r j i} \tag{3.16}
\end{equation*}
$$

Substituting (2.2), (2.6), (3.12) and (3.13) into (3.15), we obtain

$$
\begin{gathered}
\nabla_{j} u_{k i}-\nabla_{i} u_{k j}=-2\left(v^{r} \psi_{r} \mathrm{U}_{k j i}+v^{r} \tilde{\psi}_{r} \mathrm{~F}_{k}^{s} \mathrm{U}_{s j i}\right. \\
\left.+\left(a-v^{r} \psi_{r}\right) \mathrm{V}_{k j i}+\left(b-v^{r} \tilde{\psi}_{r}\right) \mathrm{F}_{k}^{s} \mathrm{~V}_{s j i}\right),
\end{gathered}
$$

from which and (3.16) it follows that $\mathrm{U}_{k j i}=\mathrm{V}_{k j i}$ is valid by virtue of (3.12).
Hence the equation of (3.14) is satisfied identically and if we denote $2 m$ linearly independent solutions by $z_{i}^{(a)}=\frac{\partial \bar{x}^{a}}{\partial x^{i}}$, then $\bar{x}^{a}=\bar{x}^{a}\left(x^{i}\right)$ is the desired transformation of coordinates.
q.e.d.

As a consequence of Theorem I and Lemma 3.2, we have
Corollary. An HS-projectively flat Kählerian manifold $\mathrm{M}^{2 m}(m>2)$ is a holomorphically subprojective Kählerian manifold if v^{h} appearing on the Christoffel symbol is an analytic K -torse-forming vector field.

Lemma 3.3. If we choose a 1 -form ψ_{j} such that

$$
\begin{equation*}
\left(a-v^{r} \psi_{r}\right)^{2}+\left(b-v^{r} \tilde{\psi}_{r}\right)^{2}=0, \tag{3.17}
\end{equation*}
$$

then $\left\{\begin{array}{c}h \\ j i\end{array}\right\}$ given by (2.1) can be transformed to the form of (3.1) by a suitable transformation of coordinates.

Proof. In this case, $h_{j i}=-\nabla_{i} \psi_{j}-\psi_{j} \psi_{i}+\tilde{\psi}_{j} \tilde{\psi}_{i}$ and at first we consider the following

$$
\begin{equation*}
-\nabla_{i} \psi_{j}-\psi_{j} \psi_{i}+\tilde{\psi}_{j} \tilde{\psi}_{\imath}=u_{j i} \tag{3.18}
\end{equation*}
$$

whose the integrability condition is, by virtue of (3.16),

$$
\begin{gathered}
-\mathrm{R}_{k i j}^{r} \psi_{r}=2\left(u_{j[k} \psi_{i]}+\mathrm{F}_{j}^{r} u_{r[k} \tilde{\psi}_{i]}+\tilde{\psi}_{j} \nabla_{[k} \tilde{\psi}_{i]}-a \mathrm{U}_{j i k}-b \mathrm{~F}_{j}^{r} \mathrm{U}_{r i k}\right), \\
\nabla_{k}\left(a-v^{r} \psi_{r}\right)=0 \quad, \quad \nabla_{k}\left(b-v^{r} \tilde{\psi}_{r}\right)=0 .
\end{gathered}
$$

From (2.2), (2.6), (3.17) and (3.18), the above equations are satisfied identically.

Next we assume that $\psi_{j i}$ satisfies $V_{k j i}=\mathrm{U}_{k j i}$ (e.g. $\psi_{j i} \stackrel{\text { put }}{=} \varphi_{j i}$).

Hence the integrability condition of (3.11), i.e. (3.14), is satisfied identically and the rest of proof is the same way as Lemma 3.2. q.e.d.

According to Lemma $3 . \mathrm{I} \sim 3.3$, we have
Theorem 2. In an HS-projectively flat Kählerian manifold $\mathrm{M}^{2 m}(m>2)$, in order that the Christoffel symbol given by (2.1) may be transformed to the form of (3.1), it is necessary and sufficient that $u_{j i}=h_{j i}$ and $\mathrm{U}_{k j i}=\mathrm{V}_{k j i}$ hold good, where the given vector field v^{h} is analytic K-torse-forming.

Bibliography

[1] L. P. Eisenhert (1927) - Non-Riemannian geometry, "Amer. Math. Soc. Coll. Publications», New York.
[2] T. Adati (1951) - On subprojective spaces IV, «Tensor N. S.》, I, 105-115.
[3] T. Adati (195I) - On subprojective spaces V, "Tensor N. S.》, r, 116-129.
[4] S. Sato (1978) - On analytic HSP-transformations in complex manifolds, "Tensor N.S.», 32, 366-372.
[5] S. Yamaguchi - On Kaehlerian torse-forming vector fields, to appear in "Kōdai Math. Sem. Rep.».
[6] S. Yamaguchi and S. Sato (1978) - On holomorphically subplanar curves in almost complex manifolds, "Tensor N. S.", 32, 231-242.
[7] S. Yamaguchi and S. Sato (1977) - Remarks on analytic HSP-transformations in Kaehler manifolds, "TRU Math.", 13, 57-63.
[8] S. Yamaguchi and W. N. Yu - Geometry of holomorphically subprojective Kählerian manifolds, to appear.
[9] K. Yano (1965) - Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford.

