Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

P.N. Pandey
 Groups of conformal transformations in conformally related Finsler manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 65 (1978), n.6, p. 269-274.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_65_6_269_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria differenziale. - Groups of conformal transformations in conformally related Finsler manifolds (*). Nota di P. N. Pandey, presentata (*) dal Socio E. Martinelli.

RIASSUNTO. - L'esistenza di varietà Riemanniane in relazione conforme che ammettano moti conformi è stata studiata da M. S. Knebelman [2] (1), K. Yano [4], e G. H. Katzin e Jack Levine [I].

Scopo di questo lavoro è stabilire l'esistenza di varietà di Finsler in relazione conforme che ammetano trasformazioni conformi. Le notazioni di questo lavoro differiscono leggermente da quelle di H. Rund [3].

I. Introduction

Let F_{n} be a Finsler manifold of class at least C^{6} equipped with line elements $\left(x^{i}, \dot{x}^{i}\right)$ and the metric function $\mathrm{F}\left(x^{i}, \dot{x}^{i}\right)^{(2)}$ satisfying the required conditions [3]. The metric tensor defined by

$$
\begin{equation*}
g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} \mathrm{~F}^{2(3)}, \tag{I.I}
\end{equation*}
$$

is positively homogeneous of degree zero in \dot{x}^{i} 's and symmetric in its indices. The tensor $\mathrm{C}_{i j k}$ defined by

$$
\begin{equation*}
\mathrm{C}_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}, \tag{1.2}
\end{equation*}
$$

is symmetric in all its lower indices and satisfies

$$
\begin{equation*}
\mathrm{C}_{i j k} \dot{x}^{i}=\mathrm{C}_{j i k} \dot{x}^{i}=\mathrm{C}_{j k i} \dot{x}^{i}=\mathrm{o} . \tag{I.3}
\end{equation*}
$$

Introducing the connection parameters $\mathrm{G}_{j k}^{i}$, Berwald defined the covariant derivative $\nabla_{k} \mathrm{X}^{i}$ of a vector X^{i} :

$$
\begin{equation*}
\nabla_{k} \mathrm{X}^{i}=\partial_{k} \mathrm{X}^{i}-\left(\dot{\partial}_{r} \mathrm{X}^{i}\right) \mathrm{G}_{k}^{r}+\mathrm{X}^{r} \mathrm{G}_{r k}^{i}, \tag{I.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{G}_{j}^{i} \stackrel{\text { def }}{=} \mathrm{G}_{j k}^{i} \dot{x}^{k} . \tag{I.5}
\end{equation*}
$$

(*) This work was orally presented by the author at the forty-sixth annual session of the National Academy of Sciences, India, held on February 5, 1977, at Delhi University India. Now the author wishes to dedicate this paper to Late Prof. B. Segre.
(**) Nella seduta del 16 dicembre 1978.
(1) Numbers in square brackets refer to the references given at the end of the paper.
(2) Henceforward all the geometric objects are assumed to be functions of (x^{i}, \dot{x}^{i}) unless otherwise stated, and the indices i, j, k, \cdots run over positive integers I to n.
(3) $\partial_{i} \equiv \partial / \partial \dot{x}^{i}, \quad \partial_{i} \equiv \partial / \partial x^{i}$.

Let us consider another Finsler manifold $\overline{\mathrm{F}}_{n}$ with metric function $\overline{\mathrm{F}}$ and metric tensor $\bar{g}_{i j}$. The Finsler manifolds F_{n} and $\overline{\mathrm{F}}_{n}$ are called conformally related if there exists a factor of proportionality μ between the two metric tensors $g_{i j}$ and $\bar{g}_{i j}$:

$$
\begin{equation*}
\bar{g}_{i j}=\mu g_{i j} . \tag{I.6}
\end{equation*}
$$

Knebelman proved that the factor of proportionality μ is at most a point function and we may now write (I.6) in the form

$$
\begin{equation*}
\bar{g}_{i j}=e^{2 \sigma} g_{i j} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\sigma(x)=\frac{1}{2} \log \mu, \tag{1.8}
\end{equation*}
$$

so that
(I.9)
a) $\bar{g}^{i j}=e^{-2 \sigma} g^{i j}$,
b) $\overline{\mathrm{F}}^{2}=e^{2 \sigma} \mathrm{~F}^{2}$.

It can be easily verified that the Berwald connection parameters $\overline{\mathrm{G}}_{j k}^{i}$ and $\mathrm{G}_{j k}^{i}$ for the above two Finsler manifolds are connected by

$$
\begin{equation*}
\overline{\mathrm{G}}_{j k}^{i}=\mathrm{G}_{j k}^{i}-\mathrm{B}_{j k}^{i m} \sigma_{m}, \tag{I.IO}
\end{equation*}
$$

where
(I.1 I) $\quad \mathrm{B}^{i m}=\frac{1}{2} \mathrm{~F}^{2} g^{i m}-\dot{x}^{i} \dot{x}^{m} \quad, \quad \mathrm{~B}_{j k}^{i m}=\dot{\partial}_{j} \dot{\partial}_{k} \mathrm{~B}^{i m} \quad, \quad \sigma_{m}=\partial_{m} \sigma$
and

$$
\begin{equation*}
\mathrm{B}_{j}^{i m}=\frac{1}{2}\left(\dot{\partial}_{j} \mathrm{~F}^{2}\right) g^{i m}+\frac{1}{2} \mathrm{~F}^{2} \mathrm{C}_{j}^{i m}-\delta_{j}^{i} \dot{x}^{m}-\delta_{j}^{m} \dot{x}^{i} \tag{1.12}
\end{equation*}
$$

An infinitesimal transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\epsilon v^{i}(x) \tag{1.13}
\end{equation*}
$$

is called a conformal transformation if the Lie derivative of the metric tensor $g_{i j}$ is propotional to itself i.e. if there exists a scalar point function ρ satisfying

$$
\begin{equation*}
\mathscr{L}_{g_{i j}}=\rho g_{i j} \tag{1.14}
\end{equation*}
$$

The above transformation is called homothetic if ρ is a constant. The above transformation is called motion if and only if $\rho=0$. Thus for a homothetic transformation

$$
\begin{equation*}
\mathscr{L} g_{i j}=c g_{i j} \tag{1.15}
\end{equation*}
$$

where c is some constant, and for a motion we have

$$
\begin{equation*}
\mathscr{L}_{g_{i j}}=0 . \tag{1.16}
\end{equation*}
$$

Thus we see that homothetic transformation and motion are particular cases of a general conformal transformation. If ρ is neither constant nor zero then the conformal transformation, is called a proper conformal transformation.

2. Groups of conformal transformations

Let $\overline{\mathrm{F}}_{n}$ admits a group G_{r} of conformal transformations generated by r vectors $\bar{v}_{\alpha}^{i},(\alpha=1,2, \cdots, r)$ such that

$$
\begin{equation*}
\mathscr{L}_{\alpha} \bar{g}_{i j}=\bar{\Psi}_{\alpha} \bar{g}_{i j} . \tag{2.1}
\end{equation*}
$$

Transvecting (2.1) with \dot{x}^{j} we have

$$
\begin{equation*}
\mathscr{L}_{\alpha} \dot{\partial}_{i} \overline{\mathrm{~F}}^{2}=\bar{\psi}_{\alpha} \dot{\partial}_{i} \mathrm{~F}^{2} \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) partially with respect to \dot{x}^{j} and using (2.1) we have

$$
\begin{equation*}
\dot{\partial}_{j} \bar{\psi}_{\alpha}=0, \tag{2.3}
\end{equation*}
$$

i.e. $\bar{\psi}_{\alpha}$ are functions of the position coordinates only. I want to discuss the question whether F_{n} admits a group of general conformal transformations, and I propose the following

Theorem 2.I. If F_{n} and $\overline{\mathrm{F}}_{n}$ are two conformally related Finsler manifolds such that $\overline{\mathrm{F}}_{n}$ admits an r-parameter group $\overline{\mathrm{G}}_{r}$ of general conformal transformations (proper conformal transformations, homothetic transformations or motions), then F_{n} admits the same group $\overline{\mathrm{G}}_{r}$ as a group of (in general) proper conformal transformations.

Proof. Let $\overline{\mathrm{F}}_{n}$ admit an r-parameter group $\overline{\mathrm{G}}_{r}$ of general conformal transformations generated by $\overline{v_{\alpha}},(\alpha=1,2, \cdots, r)$ satisfying (2.1). Transvection of (2.1) with $\dot{x}^{i} \dot{x}^{j}$ yields

$$
\begin{equation*}
\mathscr{L}_{\alpha} \bar{F}^{2}=\bar{\psi}_{\alpha} \bar{F}^{2} . \tag{2.4}
\end{equation*}
$$

In (2.4), using

$$
\begin{equation*}
\mathscr{L}_{\alpha} \mathrm{P}=\bar{v}_{\alpha}^{m} \bar{\nabla}_{m} \mathrm{P}+\left(\dot{\partial}_{m} \mathrm{P}\right) \bar{\nabla}_{s}{\overline{v_{\alpha}} \dot{x}^{s}}^{2} \tag{2.5}
\end{equation*}
$$

and the fact that the metric function is a covariant constant in the sense of Berwald we have

$$
\begin{equation*}
\left(\dot{\partial}_{m} \overline{\mathrm{~F}}^{2}\right) \bar{\nabla}_{s} \bar{v}_{\alpha}^{m} \dot{x}^{s}=\bar{\psi}_{\alpha} \overline{\mathrm{F}}^{z} . \tag{2.6}
\end{equation*}
$$

The covariant derivative $\bar{\nabla}_{s} \bar{v}^{m}$ of a vector \bar{v}^{m} is given by

$$
\begin{equation*}
\bar{\nabla}_{s} \bar{v}^{m}=\partial_{s} \bar{v}^{m}+\bar{v}^{1} \overline{\mathrm{G}}_{1 s}^{m}, \tag{2.7}
\end{equation*}
$$

here we have used the fact that \bar{v}^{1} is independent of \dot{x}^{i} 's. Using (I.IO) in (2.7) we have

$$
\begin{equation*}
\bar{\nabla}_{s} \bar{v}^{m}=\nabla_{s} \bar{v}^{m}-\bar{v}^{1} \mathrm{~B}_{1 s}^{m p} \sigma_{p} \tag{2.8}
\end{equation*}
$$

In view of (2.8) we may write

$$
\begin{equation*}
\bar{\nabla}_{s} \bar{v}_{\alpha}^{m}=\nabla_{s} \bar{v}_{\alpha}^{m}-\bar{v}_{\alpha}^{1} \mathrm{~B}_{1 s}^{m p} \sigma_{p} . \tag{2.9}
\end{equation*}
$$

Using (2.9) in (2.6) we have

$$
\begin{equation*}
\left(\dot{\partial}_{m} \overline{\mathrm{~F}}^{2}\right)\left\{\nabla_{s} \bar{v}_{\alpha}^{m}-\bar{v}_{\alpha}^{1} \mathrm{~B}_{1 s}^{m p} \sigma_{p}\right\} \dot{x}^{s}=\bar{\psi}_{\alpha} \overline{\mathrm{F}}^{2} . \tag{2.10}
\end{equation*}
$$

Using (1.9b) in (2.10) we have

$$
\begin{equation*}
\left(\dot{\partial}_{m} \mathrm{~F}^{2}\right)\left\{\dot{x}^{s} \nabla_{s} \bar{v}_{\alpha}^{m}-\bar{v}_{\alpha}^{1} \mathrm{~B}_{1}^{m p} \sigma_{p}\right\}=\bar{\psi}_{\alpha} \mathrm{F}^{2} . \tag{2.1I}
\end{equation*}
$$

From (1.12) and (2.11) we can deduce

$$
\left(\dot{\partial}_{m} \mathrm{~F}^{2}\right) \nabla_{s} \bar{v}_{\alpha}^{m} \dot{x}^{s}=\left(\bar{\psi}_{\alpha}-2 \bar{v}_{\alpha}^{1} \sigma_{1}\right) \mathrm{F}^{2},
$$

which implies

$$
\begin{equation*}
\mathscr{L}_{\alpha} \mathrm{F}^{2}=\psi_{\alpha} \mathrm{F}^{2} \tag{2.12a}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\alpha}=\bar{\psi}_{\alpha}-2 \bar{v}_{\alpha}^{1} \sigma_{j} . \tag{2.12b}
\end{equation*}
$$

Differentiating (2.12a) twice partially with respect to \dot{x} 's, using (I.I), and the commutation formula exhibited by

$$
\dot{\partial}_{1} \mathscr{L} \mathrm{~T}_{j}^{i}-\mathscr{L} \dot{\partial}_{1} \mathrm{~T}_{j}^{i}=0,
$$

we have

$$
\mathscr{L}_{\alpha} g_{i j}=\psi_{\alpha} g_{i j},
$$

which proves the statement.
3. Cases when G_{r} in F_{n} is a group of homothetic transformations

In this article we shall discuss the possibility that F_{n} admits G_{r} as group of homothetic transformations. There arises three cases:
(a) G_{r} admitted by $\overline{\mathrm{F}}_{n}$ is a group of motions,
(b) G_{n} admitted by $\overline{\mathrm{F}}_{n}$ is a group of homothetic transformations,
(c) G_{r} admitted by $\overline{\mathrm{F}}_{n}$ is a group of proper conformal transformations.

We shall discuss the above cases one by one.
Case (a). In this case we assume that $\overline{\mathrm{F}}_{n}$ admits a group G_{r} of motions and want to know whether there exists a F_{n} which admits G_{r} as a group of homothetic transformations, and propose the

Theorem 3.I. If $a \overline{\mathrm{~F}}_{n}$ admits an r-parameter group G_{r} of motions such that the rank of the generator-matrix $\left[\bar{v}_{\alpha}^{i}\right]$ is $r<n$, and the rank of the structureconstant matrix $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right],(\gamma=$ column, $\alpha, \beta=$ rowe $]$ is $<r$, then there exists a Finsler manifold F_{n} conformal to $\overline{\mathrm{F}}_{n}$ admitting G_{r} as a group of homothetic transformations.

Proof. Let $\overline{\mathrm{F}}_{n}$ admits an r-parameter group G_{r} of motions such that

$$
\begin{equation*}
\mathscr{L}_{\alpha} \bar{g}_{i j}=0, \tag{3.1}
\end{equation*}
$$

i.e. $\bar{\psi}_{\alpha}=0$ in (2.1). If F_{n} admits G_{r} as group of homothetic transformations, then

$$
\begin{equation*}
\psi_{\alpha}=\mathrm{K}_{\alpha}=\text { constant } \tag{3.2}
\end{equation*}
$$

such that at least one $\mathrm{K}_{\alpha} \neq 0$. Then from (2.12b) we have $\psi_{\alpha}=\mathrm{K}_{\alpha}=-2 \bar{v}_{\alpha}^{1} \sigma_{1}$, which implies

$$
\begin{equation*}
\mathscr{L}_{\alpha} \sigma=-\frac{1}{2} \mathrm{~K}_{\alpha} . \tag{3.3}
\end{equation*}
$$

In view of the commutation formula

$$
\begin{equation*}
\left(\mathscr{L}_{\alpha} \mathscr{L}_{\beta}-\mathscr{L}_{\beta} \mathscr{L}_{\alpha}\right) \sigma=\mathrm{C}_{\alpha \beta}^{\gamma} \mathscr{L}_{\gamma} \sigma, \tag{3.4}
\end{equation*}
$$

and the fact that Lie derivative of any constant is zero, (3.3) gives

$$
\begin{equation*}
\mathrm{C}_{\alpha \beta}^{\gamma} \mathrm{K}_{\gamma}=0 . \tag{3.5}
\end{equation*}
$$

Equation (3.3) will be integrable if (3.5) have non-trivial solutions for K_{γ}, which is possible if the rank of the matrix $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right]<r$.

Case (b). Let us assume that $\overline{\mathrm{F}}_{n}$ admits a group G_{r} of homothetic transformations. We want to discuss whether there exists F_{n} admitting G_{r} as group of homothetic transformations and we have

Theorem 3.2. If $\overline{\mathrm{F}}_{n}$ admits a group G_{r} of homothetic transformations such that the rank of $\left[\bar{v}_{\alpha}^{i}\right]$ is $r<n$, then there exists a Finsler manifold F_{n} conformal to $\overline{\mathrm{F}}_{n}$ admitting G_{r} as group of homothetic transformations.

Proof. From the hypothesis of this theorem we have

$$
\bar{\psi}_{\alpha}=\overline{\mathrm{C}}_{\alpha}=\mathrm{constant} \text { (at least one } \overline{\mathrm{C}}_{\alpha} \neq 0 \text {), }
$$

and

$$
\psi_{\alpha}=\mathrm{C}_{\alpha}=\text { constant (at least one } \mathrm{C}_{\alpha} \neq 0 \text {). }
$$

Utilizing the commutation formula (3.4), we can see that in this case we have

$$
\begin{equation*}
\mathrm{C}_{\alpha \beta}^{\gamma} \overline{\mathrm{C}}_{\gamma}=0, \tag{3.6}
\end{equation*}
$$

so the rank of $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right]<r$. From (2.12b) we have

$$
2 \bar{v}_{\alpha}^{1} \sigma_{1}=\overline{\mathrm{C}}_{\alpha}-\mathrm{C}_{\alpha}
$$

which can be written as

$$
\begin{equation*}
2 \mathscr{L}_{\alpha} \sigma=\overline{\mathrm{C}}_{\alpha}-\mathrm{C}_{\alpha} . \tag{3.7}
\end{equation*}
$$

Taking the Lie derivative with respect to $\bar{v}_{\mathrm{\beta}}^{i}$ and using (3.4) and (3.6) we have $\mathrm{C}_{\alpha \beta}^{\gamma} \mathrm{C}_{\gamma}=0$, which is an integrability condition for (3.7). Since the rank of $\left[\bar{v}_{\alpha}^{1}\right]$ is $r<n$ and rank of $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right]<r$ (as we have proved), (3.7) will always
admit a non-trivial solution for the C_{γ} (and such that $\overline{\mathrm{C}}_{\gamma} \neq \mathrm{C}_{\gamma}$ for at least one γ). Thus we have the theorem.

Case (c) In this case $\overline{\mathrm{F}}_{n}$ admits a group G_{r} of proper conformal transformations and want to find F_{n} admitting G_{r} as a group of homothetic transformations. In this case we have

Theorem 3.3. If $a \overline{\mathrm{~F}}_{n}$ admits an r-parameter group G_{r} of proper conformal transformations such that the rank of $\left[v_{\alpha}^{-1}\right]$ is $r<n$, and the rank of matrix $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right]$ is $<r$, then there will exist manifolds F_{n} conformal to $\overline{\mathrm{F}}_{n}$ for which G_{r} will be a group of homothetic transformations.

Proof. Under the hypothesis of this theorem we have

$$
\begin{equation*}
\mathscr{L}_{\alpha} \bar{g}_{i j}=\bar{\psi}_{\alpha} \bar{g}_{i j} \quad\left(\text { at least one } \bar{\psi}_{\alpha} \neq 0\right) . \tag{3.8}
\end{equation*}
$$

From (2.12b) we have

$$
\begin{equation*}
2 \mathscr{L}_{\alpha} \sigma=\bar{\psi}_{\alpha}-\mathrm{C}_{\alpha} . \tag{3.9}
\end{equation*}
$$

From (3.8) we have

$$
\begin{equation*}
\mathscr{L}_{\alpha} \bar{\psi}_{\beta}-\mathscr{L}_{\beta} \bar{\psi}_{\alpha}=\mathrm{C}_{\alpha \beta}^{\gamma} \bar{\psi}_{\gamma} . \tag{3.10}
\end{equation*}
$$

Using (3.10) in the integrability condition of (3.9) we have $C_{\alpha \beta}^{\gamma} C_{\gamma}=0$, which will admit a non trivial solution for C_{γ} if $\left[\mathrm{C}_{\alpha \beta}^{\gamma}\right]<r$. Thus we have the theorem.

The author is thankful to Prof. R.. S. Mishra for his generosity and encouragement, and to Dr. R. B. Misra for his guidance.

References

[1] G. H. Katzin and Jack Levine (1966) - General conformal motions in conformally related spaces, "Tensor»(N.S.), 17, 249-252.
[2] M. S. Knebflman (1930) - On groups of motions in related spaces, "Amer. Journ. Math ", 52, 280-282.
[3] H. Rund (1959) - The differential geometry of Finsler spaces, Springer-Verlag.
[4] K. Yano (1957) - The theory of Lie derivatives and its applications, North Holland Publishing Co., Amsterdam.

