Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

P.J. McKenna

Existence of Solutions Across Resonance in the Large for Semilinear Problems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 65 (1978), n.6, p. 247-251.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_65_6_247_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Analisi matematica. - Existence of Solutions Across Resonance in the Large for Semilinear Problems. Nota di P. J. McKenna; presentata (*) dal Socio D. Graffi.

Riassunto. -. L'Autore considera l'equazione astratta:

$$
\begin{equation*}
\mathrm{E} x+\lambda x=\mathrm{N} x \tag{I}
\end{equation*}
$$

con E operatore lineare, N operatore non lineare, λ parametro. Detti λ_{0} e λ_{1} due successivi autovalori di (I) ($\operatorname{con} \mathrm{N}=0$), e sotto opportune condizione per N , dimostra che esiste un $\varepsilon>0$, tale che per $\lambda_{0}-\varepsilon<\lambda<\lambda_{1}$ la (I) ammette un insieme di soluzioni uniformemente limitate.

Introduction

The study of the existence of solutions across resonance was introduced by Cesari [I] where he studied the existence of solutions to equations of the form $\mathrm{E} x+\alpha x=\mathrm{N} x$, for small values of α, with suitable conditions on the linear operator E at resonance and the nonlinear operator N. Again in the framework of the alternative method, Mc Kenna [6, 7] and Cesari [2] showed that similar theorems could be proved for equations of the type $E x+\varepsilon \mathrm{N}_{1} x=$ $=\mathrm{N} x$ for sufficiently small ε and suitable nonlinear N_{1}.

In this paper, we adopt a different approach, and show that in the presence of a now well understood geometric condition on N , the equation $\mathrm{E} x+$ $+\alpha x=\mathrm{N} x$ can be solved from as close to one eigenvalue as we desire to some point across the next eigenvalue.

The Main Result

Let \mathscr{H} be a Hilbert space, and let N be a continuous nonlinear bounded map from \mathscr{H} to \mathscr{H}. We assume that E has a sequence of eigenvalues $\lambda_{1} \leq \lambda_{2}, \cdots, \lambda_{i} \rightarrow+\infty$ with associated orthonormal eigenvectors ϕ_{i}.

If $\left\{\phi_{i}\right\}_{m+1}^{m+k}$ are the eigenvalues associated with eigenvalue zero, $\lambda_{1} \leq \cdots$ $\cdots \leq \lambda_{m}<0<\lambda_{m+k+1} \leq \cdots$, then we define a partial inverse K on the space of functions of the type

$$
x=\sum_{0}^{m} c_{i} \phi_{i}+\sum_{m+k+1}^{\infty} c_{i} \phi_{i} \quad \text { and } \quad \mathrm{K} x=\sum_{i=0}^{m} \frac{\mathrm{I}}{\lambda_{i}} c_{i} \phi_{i}+\sum_{m+k+1}^{\infty} \frac{1}{\lambda_{i}} c_{i} \phi_{i}
$$

[^0]If $\mathrm{I}-\mathrm{P}$ is the orthogonal projection onto these functions x, then $\mathrm{K}(\mathrm{I}-\mathrm{P}) \mathscr{H} \rightarrow(\mathrm{I}-\mathrm{P}) \mathscr{H}$ is compact and since

$$
\begin{gather*}
(\mathrm{K} x, x)=\sum_{0}^{m} \frac{\mathrm{I}}{\lambda_{i}} c_{i}^{2}+\sum_{m+k+1}^{\infty} \frac{\mathrm{I}}{\lambda_{i}} c_{i}^{2} \quad \text { so } \\
\frac{\mathrm{I}}{\lambda_{m}}\|x\|^{2} \leq(\mathrm{K} x, x) \leq \frac{\mathrm{I}}{\lambda_{m+k+1}}\|x\|^{2} . \tag{I}
\end{gather*}
$$

We assume

$$
\begin{array}{lll}
\left(\mathrm{N}_{1}\right) & \|\mathrm{N} x\| \leq \mathrm{M} & \text { for } \text { all } x \in \mathscr{H} \tag{1}\\
\left(\mathrm{~N}_{2}\right) & \forall \mathrm{R}_{1}>0, & \exists \mathrm{R}_{2}>0
\end{array} \quad \text { and } \delta:[0, \infty) \rightarrow(0, \infty)
$$

such that if

$$
x_{0} \in \mathrm{P} \mathscr{H},\left\|x_{0}\right\| \geq \mathrm{R}_{0} \quad x_{1} \in(\mathrm{I}-\mathrm{P}) \mathscr{H},\left\|x_{1}\right\| \leq \mathrm{R}_{1}
$$

then

$$
\left(\mathrm{N}\left(x_{0}+x_{1}\right), x_{0}\right)>\delta\left(\left\|x_{0}\right\|\right)>0 .
$$

Theorem I. Under the foregoing general assumptions on E and the particular assumptions N_{1}) and N_{2}) on N , there exists $\alpha_{0}<0$ so that for every $\alpha, \alpha_{0} \leq \alpha<\lambda_{m+k+1}$, the equation

$$
\begin{equation*}
\mathrm{E} x-\alpha x=\mathrm{N} x \tag{2}
\end{equation*}
$$

has at least one solution. Moreover for every $\alpha_{1}, 0 \leq \alpha_{1}<\lambda_{m+k+1}$ there exists a uniformly bounded connected set of solutions for $\alpha \in\left[\alpha_{0}, \alpha_{1}\right]$.

Proof. We shall search for solutions (cfr. [2], [6] and [10]) of the coupled equation

$$
\begin{equation*}
\mathrm{o}=x-\{\mathrm{P} x-\mathrm{K}(\mathrm{I}-\mathrm{P}) \mathrm{N} x+\alpha \mathrm{K}(\mathrm{I}-\mathrm{P}) x-\mathrm{PN} x-\alpha \mathrm{P} x\}=\left(\mathrm{I}-\mathrm{T}_{a}\right) x \tag{3}
\end{equation*}
$$

We define a region Ω in \mathscr{H} so that $\mathrm{d}_{\mathrm{LS}}(\mathrm{O}, \mathrm{I}-\mathrm{T}, \Omega)$ is equal to one. For any given $\alpha_{1}, o<\alpha_{1}<\lambda_{m+k+1}$, let

$$
\Omega=\left\{x_{0}+x_{1}, x_{0} \in \mathrm{P} \mathscr{H}, x_{1} \in(\mathrm{I}-\mathrm{P}) \mathscr{H},\left\|x_{0}\right\| \leq \mathrm{R}_{0},\left\|x_{1}\right\| \leq \mathrm{R}_{1} \|\right\}
$$

where R_{0} and R_{1} are chosen so that

$$
\begin{equation*}
\mathrm{R}_{1}>2\left(\mathrm{I}-\alpha_{1} / \lambda_{m+k+1}\right)^{-1}\|\mathrm{~K}\| \mathrm{M}, \tag{4}
\end{equation*}
$$

where M is the constant in $\left(N_{2}\right)$ and R_{0} is then the corresponding constant in $\left(\mathrm{N}_{3}\right)$.

We shall determine below $\alpha_{0}, \lambda_{m}<\alpha_{0}<0$, and show that for $\alpha \in\left[\alpha_{0}, \alpha_{1}\right]\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z \neq 0$ for $z \in \partial \Omega$ and $0 \leq \lambda \leq \mathrm{I}$.
a) Consider $z=x_{0}+x_{1}\left\|x_{0}\right\| \leq \mathrm{R}_{0},\left\|x_{1}\right\|=\mathrm{R}_{1}$. Then

$$
\left(\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z, x_{1}\right)=\left\|x_{1}\right\|^{2}-\lambda\left(\mathrm{K}(\mathrm{I}-\mathrm{P}) \mathrm{N}\left(x_{0}+x_{1}\right), x_{1}\right)-\lambda \alpha\left(\mathrm{K} x_{1}, x_{1}\right) .
$$

In the case where $\alpha \leq 0$

$$
\begin{aligned}
\left(\left(\mathrm{I}-\lambda \mathrm{T}_{a}\right) z, x_{1}\right) & \geq \mathrm{R}_{1}^{2}-\|\mathrm{K}\| \mathrm{MR}_{1}+\alpha_{0}\|\mathrm{~K}\| \mathrm{R}_{1}^{2} \\
& \geq \mathrm{R}_{1}\|\mathrm{~K}\| \mathrm{M}+\alpha_{0}\|\mathrm{~K}\| \mathrm{R}_{1}^{2}
\end{aligned}
$$

If $\left|\alpha_{0}\right|<M / 2 R_{1}$, then $\left(\left(I-\lambda T_{\alpha}\right) z, x_{1}\right)>\delta$.
In the remaining case where $0 \leq \alpha \leq \alpha_{1}$ we have

$$
\begin{aligned}
\left(\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z, x_{1}\right) & \geq\left\|x_{1}\right\|^{2}-\|\mathrm{K}\| \mathrm{M}\left\|x_{1} \lambda \alpha-\alpha_{0} / \lambda_{m+k+1}\right\| x_{1} \|^{2} \\
& \geq \mathrm{R}_{1}^{2}-\|\mathrm{K}\| \mathrm{MR}_{1}-\alpha \lambda_{m+k+1}^{-1} \mathrm{R}_{1}^{2} \geq \mathrm{R}_{1}\|\mathrm{~K}\| \mathrm{M}
\end{aligned}
$$

the last inequality coming from (4).
Thus for α_{0} sufficiently small, there exists $\delta>0$ so that if $z=x_{1}+x_{1}$, $\left\|x_{0}\right\| \leq \mathrm{R}_{0},\left\|x_{1}\right\|=\mathrm{R}_{1}$ then $\left(\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z, x_{1}\right) \geq \delta$ for all $\lambda_{1} \circ \leq \lambda \leq 1$.
b) We now consider $z=x_{0}+x_{1},\left\|x_{0}\right\|=\mathrm{R}_{0},\left\|x_{1}\right\| \leq \mathrm{R}_{1}$.

Then

$$
\left(\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z, x_{0}\right)=(\mathrm{I}-\lambda)\left\|x_{0}\right\|^{2}+\lambda\left(\mathrm{N}\left(x_{0}+x_{1}\right), x_{0}\right)+\lambda \alpha\left\|x_{0}\right\|^{2} .
$$

Since $\left(N\left(x_{0}+x_{1}\right), x_{0}\right) \geq \delta\left(\left\|x_{0}\right\|\right)>0$ on this part of the boundary, taking $\delta_{1}=\delta\left(\mathrm{R}_{0}\right)$ and $\left|\alpha_{0}\right|<\delta_{1} / 2 \mathrm{R}_{0}^{2}$, we have $\left(\left(\mathrm{I}-\lambda \mathrm{T}_{a}\right) z, x_{0}\right)>\delta_{2}>0$ for all $\lambda_{1} \circ \leq \lambda \leq 1$.

Thus the equations $\left(\mathrm{I}-\mathrm{T}_{\alpha}\right) z=0$ have solutions in Ω for all $\alpha, \alpha_{0} \leq$ $\leq \alpha \leq \alpha_{1}$.

To establish the connectedness of a set of solutions, we need only quote the following Theorem, which is a slight variation of one found in [9].

Theorem A. Let $\mathrm{F}(t, x)$ be a continuous compact map from $\left[\alpha_{0}, \alpha_{1}\right] \times \mathscr{H}$ into \mathscr{H}, such that $\mathrm{d}_{\mathrm{LS}}(\mathrm{I}-\mathrm{F}(t, x), 0, \Omega)=\mathrm{I}$ for all $t \in\left[\alpha_{0}, \alpha_{1}\right]$, and $\|\mathrm{F}(t, x)\| \geq \delta$ on $\partial \Omega$ where Ω is a bounded open set of \mathscr{H}. Then there is a connected set of points $\left\{(t, x) \mid t \in\left[\alpha_{0}, \alpha_{1}\right], x \in \Omega, \mathrm{~F}(t, z)=z\right\}$ that meets both $\left\{\alpha_{0}\right\} \times \bar{\Omega}$ and $\left\{\alpha_{1}\right\} \times \bar{\Omega}$.

Taking $\mathrm{F}(t, z)=\mathrm{T}_{\alpha} z$, it is clear that the theorem implies that there exists a connected set of solutions x_{α} to $\left(\mathrm{I}-\mathrm{T}_{\alpha}\right) x=0$ for all $\alpha \in\left[\alpha_{0}, \alpha_{1}\right]$. This concludes the proof of the theorem.

The reader will observe that in the proof of the theorem, we showed that for all $\alpha \in\left[\alpha_{0}, \alpha_{1}\right]$ the inequality $\left\|\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}\right) z\right\|>\delta>0$ held for all $z \in \partial \Omega$, $\lambda \in[0, I]$. This observation would allow us to include an additional nonlinear term $\varepsilon \mathrm{N}_{1}$ in the equation $\mathrm{E} x+\alpha x=\mathrm{N} x+\varepsilon \mathrm{N}_{1}(x)$, with the assumption that $\mathrm{N}_{1}: \mathscr{H} \rightarrow \mathscr{H}$ maps bounded sets into bounded sets. Then for $\mathrm{T}_{\alpha}^{\prime}=\mathrm{P} x-$ $-\mathrm{K}(\mathrm{I}-\mathrm{P})\left(\mathrm{N} x+\varepsilon \mathrm{N}_{1} x\right)-\alpha \mathrm{K}(\mathrm{I}-\mathrm{P}) x-\mathrm{P}\left(\mathrm{N} x+\varepsilon \mathrm{N}_{1} x\right)-\alpha \mathrm{P} x$ we would have $\left\|\left(\mathrm{I}-\lambda \mathrm{T}_{\alpha}^{\prime}\right) z\right\| \geq \delta / 2$ and Theorem I would apply.

In the event of the reverse inequality $\left(\mathrm{N}_{2}^{\prime}\right)\left(\mathrm{N}\left(x_{0}+x_{1}\right) x_{0}\right) \leq \delta<0$ being satisfied instead of $\left(\mathrm{N}_{2}\right)$, a slight modification of the proof of Theorem I would yield.

Theorem II. Under the previous assumptions on E and the assumptions $\left(\mathrm{N}_{1}\right)$ and $\left(\mathrm{N}_{2}^{\prime}\right)$ on N , there exists $\alpha_{0}>0$ so that for every $\alpha, \lambda_{m}<\alpha<\alpha_{0}$ the equations $\mathrm{L} x-\alpha x=\mathrm{N} x$ has at least one solution. Moreover, for every $\alpha_{1}, \lambda_{m}<\alpha_{1} \leq 0$, there exists a connected uniformly bounded set of solutions for $\alpha \in\left[\alpha_{1}, \alpha_{0}\right]$.

If only the inequality ($\left.\mathrm{N}_{2}^{\prime \prime}\right)\left(\mathrm{N}\left(x_{0}+x_{1}\right), x_{0}\right) \geq 0$ is satisfied instead of N_{2}) the following result holds.

Theorem III. Under the same general assumptions on E and assumptions $\left(\mathrm{N}_{1}\right)\left(\mathrm{N}_{2}^{\prime \prime}\right)$. on N , then for every $\alpha, 0 \leq \alpha<\lambda_{m+k+1}$, the equation $\mathrm{E} x-\alpha x=\mathrm{N} x$ has at least a solution $x_{\alpha} \in \mathscr{H}$. Moreover, for every $\alpha, 0 \leq \alpha \leq \alpha_{1}<\lambda_{m+k+1}$ the solutions x_{α} are uniformly bounded, and there exists a connected subset of the x_{α} 's for $\alpha \in\left(0, \alpha_{1}\right)$.

Remarks. The connection between the geometric conditions $\mathrm{N}_{2}, \mathrm{~N}_{2}^{\prime}, \mathrm{N}_{2}^{\prime \prime}$ and the conditions of Landesman and Lazer [4], Lazer and Leach [5], Williams [Io], and others is now well understood [3]. The observation that the Landesman and Lazer condition implies (N_{2}) we first made by Williams [10], and has been used extensively by Cesari [2], McKenna [6], and others.

In particular if $\mathrm{E} x=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+m^{2}$ with periodic boundary conditions on $[0,2 \pi]$ and \mathscr{H} is the space of $\mathrm{L}^{2}[0,2 \pi]$, and $\mathrm{N} x=f(x)-h(t)$, then as Lazer and Leach [5], the condition N_{2} is impled by

$$
\begin{array}{cc}
f(+\infty)=\mathrm{D} \quad, \quad f(-\infty)=\mathrm{C} \\
\mathrm{~A}=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} h(t) \sin m t \mathrm{~d} t \quad \mathrm{~B}=\frac{\mathrm{I}}{2 \pi} \int_{\mathbf{0}}^{2 \pi} h(t) \cos m t \mathrm{~d} t
\end{array}
$$

and $2(\mathrm{D}-\mathrm{C})>\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)^{1 / 2}$.
In particular, if $\|h\|<\mathrm{D}-\mathrm{C}$, then condition $\left(\mathrm{N}_{1}\right)$ is satisfied uniformly at each eigenvalue $\lambda_{i}=i^{2}$ and thus all solutions of $+x^{\prime \prime}+m^{2} x=g(x)+$ $+h(t)$, are bounded for $m^{2} \in[\mathrm{o}, \mathrm{R}]$, with bound depending only on R .

References

[!] L. Cesari - (a) Teoremi di esistenza al passaggio attraverso valori critici, «Rend. Accad. Naz. Lincei». To appear. (b) An abstract existence theorem across a point of resonance, Intern. Symposium on Dynamical Systems, Gainesville, Fla., i976. To appear. (c) Nonlinear oscillations cross a point of resonance for nonselfadjoint systems, "Journ. Diff. Equations». To appear.
[2] L. Cesari - Nonlinear Analysis. A Volume in Honor of E. H. Rothe, Academic Press (to appear).
[3] L. Cesari (1976) - Functional Analysis and Nonlinear Differential Equations, in a volume of the same title (Cesari, Kannan, Schuur, eds.), Dekkar.
[4] E. M. Landesman and A. C. Lazer (1970) - Nonlinear perturbations of elliptic boundary value problems at resonance, "J. Math. Mech." (19), 609-623.
[5] A. C. LAZER and D. E. LEACH (1969) - Bounded perturbations of forced nonlinear oscilla: tions at resonance, "Ann. di Mat. pura applic.", 72, 49-68.
[6] P. J. McKenna (1976) - Nonselfadjoint Semilinear Equations in the Alternative Method, Ph. D. thesis, University of Michigan.
[7] P. J. McKenna - Discontinuous Perturbations of Elliptic Boundary Value Problems at Resonance (to appear).
[8] H. SHAW - A nonlinear elliptic boundary value problem at resonance, "Trans. Amer. Math. Soc." (to appear).
[9] H. Shaw - Nonlinear Elliptic Boundary Value Problems at Resonance, Ph. D. Thesis, University of Michigan.
[10] S. Williams (1970) - A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem, "J. Diff. Equations», 8, 580-586.

[^0]: (*) Nella seduta dell'8 gennaio 1977.

